Статья анализирует результаты AI Product Hack, рассматривая спорное судейство и кейс компании Raft по мониторингу токсичного контента в AI-продуктах. Исследуются риски и последствия неконтролируемого поведения LLM в реальных проектах.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2🔥1
__name__ == "__main__"
в Python?Конструкция
if __name__ == "__main__"
определяет, выполняется ли скрипт как основная программа или импортируется в качестве модуля. Это позволяет запускать код только при непосредственном запуске скрипта, исключая его выполнение при импорте.def greet():
print("Hello from greet!")
if __name__ == "__main__":
greet() # Этот вызов выполнится только при запуске скрипта напрямую
🗣 В этом примере greet() будет вызвана, если файл запускается напрямую. Если скрипт импортируется как модуль, greet() не вызовется, сохраняя модульную структуру кода.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤2
Статья раскрывает процесс использования БПЛА и нейросетей для точного распознавания объектов на ортофотопланах. Описаны этапы подготовки данных, разметки и обучения сети на примере поиска пикетных столбиков на ж/д перегонах. Исходный код доступен на GitHub.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
В статье рассказывается, как быстро протестировать 16 LLM для создания текстовых прототипов, даже если вы не в теме ML. Берём несколько моделей, сравниваем результаты, оцениваем, подходит ли под задачу.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥1
🕳 Не избегай «странных» багов — изучай их до конца
Столкнулся с багом, который исчезает после перезапуска? Или ведёт себя непоследовательно? Проще списать на случайность. Но это ловушка.
👉 Совет: такие баги — твои лучшие учителя. Разбери их до основания, даже если потратишь на это день. Ты прокачаешься в логике, научишься работать с пограничными случаями и будешь увереннее в своём коде.
Столкнулся с багом, который исчезает после перезапуска? Или ведёт себя непоследовательно? Проще списать на случайность. Но это ловушка.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍2🔥1
• Пишем Wake-on-LAN сервис на ESP8266 при помощи ChatGPT
• Необычные вкусы покупателей: что такое товарные пары и как их исследовать
• Сгенерированный ИИ код сделает вас плохим программистом
• Словари в Python: обзор и как пользоваться
• Поиск жулика: Как понять, что перед вами ChatGPT 4?
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1🔥1
Статья раскрывает процесс полной автоматизации создания карточек товаров для маркетплейсов, используя нейросети, Photoshop и немного креативного подхода. Описаны практические методы, которые экономят тысячи рублей на огромном ассортименте.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍1🔥1
Напишите функцию, которая принимает список чисел и возвращает все значения, которые являются выбросами. Выбросы определяются как значения, которые находятся ниже первого квартиля (Q1) минус 1.5 * IQR или выше третьего квартиля (Q3) плюс 1.5 * IQR, где IQR — межквартильный размах.
Входной список:
[10, 12, 14, 15, 15, 16, 16, 16, 17, 18, 19, 100]
Ожидаемый вывод:
[100]
Решение задачи
import numpy as np
def find_outliers(data):
q1 = np.percentile(data, 25)
q3 = np.percentile(data, 75)
iqr = q3 - q1
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
return [x for x in data if x < lower_bound or x > upper_bound]
# Пример использования:
input_data = [10, 12, 14, 15, 15, 16, 16, 16, 17, 18, 19, 100]
result = find_outliers(input_data)
print(result) # Ожидаемый результат: [100]
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤1
Статья описывает приложение, объединяющее GraphRAG и AutoGen-агентов с локальными LLM от Ollama для автономного встраивания и вывода. Рассмотрены ключевые аспекты: интеграция знаний, настройка LLM, вызов функций и интерактивный интерфейс.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2👎1🔥1
Напишите функцию, которая принимает DataFrame и заменяет отсутствующие значения (NaN) в каждом числовом столбце на среднее значение этого столбца. Если столбец содержит только NaN, оставьте его без изменений.
feature1 feature2 feature3
0 1.0 10.0 NaN
1 2.0 NaN NaN
2 NaN 30.0 NaN
3 4.0 40.0 NaN
feature1 feature2 feature3
0 1.00 10.0 NaN
1 2.00 26.7 NaN
2 2.33 30.0 NaN
3 4.00 40.0 NaN
Решение задачи
import pandas as pd
def fill_missing_with_mean(df):
numeric_columns = df.select_dtypes(include=['float', 'int'])
for column in numeric_columns:
if df[column].notna().any(): # Проверяем, есть ли значения не NaN
df[column] = df[column].fillna(df[column].mean())
return df
# Пример использования:
data = pd.DataFrame({
'feature1': [1.0, 2.0, None, 4.0],
'feature2': [10.0, None, 30.0, 40.0],
'feature3': [None, None, None, None]
})
result = fill_missing_with_mean(data)
print(result)
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4❤1👍1
Data engineer (junior)
DATA-аналитик/Аналитик данных (Junior)
Data Scientist (Junior)
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Кратко о том, как Суцкевер стал не просто сооснователем OpenAI, а мозгом ChatGPT, почему ушёл в новый проект и зачем вообще создавать "безопасный сверхинтеллект".
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👎3❤2🔥2
One-Hot Encoding — это способ преобразования категориальных признаков в числовые. Он создаёт бинарные столбцы для каждого уникального значения категории. Это важно, потому что большинство алгоритмов машинного обучения не работают напрямую с текстовыми значениями.
import pandas as pd
df = pd.DataFrame({'Цвет': ['красный', 'синий', 'зелёный']})
encoded = pd.get_dummies(df)
print(encoded)
🗣️ В этом примере get_dummies() преобразует колонку Цвет в три бинарных признака: Цвет_красный, Цвет_синий, Цвет_зелёный. Для каждой строки только один из них равен 1, остальные — 0.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2🔥1
Data Scientist (Middle)
Data Engineer (Middle)
Data Scientist
Please open Telegram to view this post
VIEW IN TELEGRAM
👎13❤1🐳1
Вот очень простое объяснение для тех, кто не хочет вдаваться в сложную математику, но и не готов принимать эту ключевую технологию как магию, которая просто работает. Конечно, никакого волшебства тут и нет — идея на самом деле довольно проста..
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1🔥1
Напишите простую реализацию логистической регрессии с нуля (без sklearn) для бинарной классификации. Это поможет лучше понять, как работает один из самых базовых алгоритмов в машинном обучении.
Решение задачи
import numpy as np
# Сигмоида
def sigmoid(z):
return 1 / (1 + np.exp(-z))
# Функция логистической регрессии
def logistic_regression(X, y, lr=0.1, epochs=1000):
m, n = X.shape
X = np.c_[np.ones(m), X] # добавляем bias
theta = np.zeros(n + 1)
for _ in range(epochs):
z =np.dot (X, theta)
h = sigmoid(z)
gradient =np.dot (X.T, (h - y)) / m
theta -= lr * gradient
return theta
# Предсказание
def predict(X, theta):
X = np.c_[np.ones(X.shape[0]), X]
return sigmoid(np.dot (X, theta)) >= 0.5
# Пример
X = np.array([[1], [2], [3], [4]])
y = np.array([0, 0, 1, 1])
theta = logistic_regression(X, y)
print(predict(X, theta)) # [False False True True]
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4🔥1
В статье — разбор, почему собирать платформу инференса LLM с нуля не всегда разумно, и как MWS GPT помогает запускать большие языковые модели проще, быстрее и без лишнего сумасшествия.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🐳2❤1🔥1
Статья продолжает разбор моделирования температурного временного ряда с двойной сезонностью. Основное внимание уделено подбору оптимальных параметров сезонной модели САРПСС для точного описания данных.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1🔥1
Ведущий Python разработчик
Ведущий менеджер AI (Data Scientist)
Senior Data Analyst
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1