Статья предлагает разобраться в устройстве Diffusion моделей, их математике и принципах работы. Автор делится простыми объяснениями, примерами кода и результатами генерации изображений на собственной модели.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4
Учёные из Принстона проанализировали новые статьи в «Википедии» и выяснили, что ИИ уже активно пишет энциклопедию. Около 5% англоязычных материалов содержат значительные объёмы текста, сгенерированного машинами.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2🔥2
train_test_split
в Scikit-learn и зачем он используется?train_test_split
— это функция из библиотеки Scikit-learn, которая используется для разделения данных на тренировочный и тестовый наборы. Это необходимо для оценки качества модели на данных, которые она не видела во время обучения.from sklearn.model_selection import train_test_split
import numpy as np
# Данные
X = np.array([[1], [2], [3], [4], [5]])
y = np.array([10, 20, 30, 40, 50])
# Разделение данных (80% на обучение, 20% на тест)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print("Тренировочные данные:", X_train, y_train)
print("Тестовые данные:", X_test, y_test)
🗣️ В этом примере данные разделяются на тренировочный и тестовый наборы в соотношении 80/20. Это позволяет модели обучаться на одной части данных и проверять точность на другой, что предотвращает переобучение.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1
Data Analyst со знанием 1C / SQL / Python
•
1C, PostgreSQL, Python, SQL, Tableau•
от 150 000 до 200 000 ₽ | от 3 лет опытаРазработчик чатбота с интеграцией LLM/специалист по Data Science
•
Python, Обработка естественного языка, Машинное обучение, Pandas, Анализ данных•
от 300 до 450 € | Опыт не указанData Scientist
•
Python, SQL, Машинное обучение, Анализ данных, Математическая статистика•
Уровень дохода не указан | от 2 лет опытаPlease open Telegram to view this post
VIEW IN TELEGRAM
👍4❤1
Статья рассказывает, как с помощью нейросетей улучшить качество старых видеозаписей, включая VHS и DVD. Описываются инструменты, процесс и результаты с примерами, доступные каждому без глубоких технических знаний.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤2
Напишите функцию, которая принимает две строки и проверяет, являются ли они анаграммами. Анаграммы — это слова, которые содержат одинаковые буквы в одинаковом количестве, но в разном порядке. Игнорируйте регистр и пробелы.
Пример:
result1 = are_anagrams("listen", "silent")
print(result1) # Ожидаемый результат: True
result2 = are_anagrams("hello", "world")
print(result2) # Ожидаемый результат: False
Решение задачи
def are_anagrams(str1, str2):
# Удаляем пробелы и приводим к одному регистру
str1 = ''.join(str1.lower().split())
str2 = ''.join(str2.lower().split())
# Проверяем, равны ли отсортированные символы
return sorted(str1) == sorted(str2)
# Пример использования:
result1 = are_anagrams("listen", "silent")
print(result1) # Ожидаемый результат: True
result2 = are_anagrams("hello", "world")
print(result2) # Ожидаемый результат: False
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11👎3❤2
Статья рассказывает, как с помощью Python и ChatGPT создать скрипт для автоматической загрузки видео с YouTube и генерации метаданных (описаний и обложек) для интеграции с медиацентром Kodi.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥5❤1👍1
Статья исследует развитие ИИ в общении с клиентами и его интеграцию в бизнес. Обсуждаются успехи и сложности внедрения чат-ботов, важность настройки под бизнес-цели и перспективы замены сотрудников ИИ.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍1
Prompt-инженер
•
Технический перевод, техническая документация, Python•
до 200 000 ₽ | Старший (Senior) уровеньАналитик данных / Data Analyst
•
SQL, Python, математическая статистика, Jupyter Notebook, A/B тестирование•
от 300 000 до 400 000 ₽ | Старший (Senior) уровеньDatabase Administrator
•
ClickHouse, PostgreSQL, Python•
до 5 000 $ | Старший (Senior) уровеньPlease open Telegram to view this post
VIEW IN TELEGRAM
❤1
collections
в Python и как он используется?collections
— это стандартный модуль Python, который предоставляет высокопроизводительные контейнеры данных, такие как Counter, deque, и defaultdict. Он используется для более удобной работы со структурами данных.from collections import Counter
data = ['apple', 'banana', 'apple', 'orange', 'banana', 'apple']
counter = Counter(data)
print(counter) # Counter({'apple': 3, 'banana': 2, 'orange': 1})
🗣️ В этом примере Counter подсчитывает количество каждого элемента в списке data. Это полезно для анализа данных, работы с частотами или подсчёта элементов в коллекциях.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
Team Lead Data Science
•
Python, PySpark, SQL, Hadoop, Linux, Bash, Git•
Уровень дохода не указан | от 3 лет опытаTeam Lead Data Scientist (Персонификация)
•
Git, Машинное обучение, NLP•
Уровень дохода не указан | Опыт не указанВедущий инженер данных (Data Platform и ML)
•
SQL, Python, ClickHouse, Apache Kafka, Apache Airflow, Grafana, DWH, ETL, Apache Spark•
Уровень дохода не указан | от 3 лет опытаPlease open Telegram to view this post
VIEW IN TELEGRAM
❤1
Рассмотрим, может ли машинное обучение реально помогать трейдерам. Разберём процесс создания MarketNet, от экспериментов с классификацией до оценки успешности сделок на основе данных OHLC и рыночных профилей.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2
Каждый раз вручную выполняешь одно и то же действие? Создаёшь файлы, пишешь повторяющиеся команды?
Please open Telegram to view this post
VIEW IN TELEGRAM
❤15
Статья раскрывает исследование по снятию защиты в современной языковой модели ИИ. Описан процесс автоматизации взлома модели и представлена программа, демонстрирующая успешный обход встроенных механизмов безопасности.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
В этой статье я привел базовые сведения о логистической регрессии и показал как сделать модель с нуля на чистом Python. Логистическая функция, обучение, метрики качества для модели классификации, реализация и небольшой разбор обучения весов.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8👍3🐳1
Напишите функцию, которая принимает текстовую строку и возвращает наиболее часто встречающееся слово и количество его вхождений. Игнорируйте регистр и знаки препинания.
Пример:
text = "Python is great, and Python is fun! Learning Python is rewarding."
result = most_common_word(text)
print(result)
# Ожидаемый результат: ('python', 3)
Решение задачи
import re
from collections import Counter
def most_common_word(text):
words = re.findall(r'\b\w+\b', text.lower())
counter = Counter(words)
return counter.most_common(1)[0]
# Пример использования:
text = "Python is great, and Python is fun! Learning Python is rewarding."
result = most_common_word(text)
print(result)
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥9❤1
• Смарт-функции в Алисе: как LLM помогает понять, чего хочет пользователь
• Сбер выкладывает GigaChat Lite в открытый доступ
• История YOLO – самой известной архитектуры компьютерного зрения
• Магия простоты: как мы улучшили отображение общественного транспорта на карте
• Обучение и fine-tuning моделей простым языком: зачем, как, где
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7👍3🐳1
Статья рассказывает, как Pydantic помогает бизнесу гибко управлять наградами для пользователей. Описаны преимущества Pydantic в валидации и преобразовании данных по сравнению с dataclass.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
Напишите функцию на Python, которая принимает обучающий набор данных, тестовый набор данных и значение 𝑘, а затем использует алгоритм k-ближайших соседей (kNN) для классификации тестовых данных. Функция должна возвращать предсказанные метки для тестового набора данных.
Пример:
import numpy as np
X_train = np.array([[1, 2], [2, 3], [3, 4], [5, 5]])
y_train = np.array([0, 0, 1, 1])
X_test = np.array([[2, 2], [4, 4]])
predictions = knn_classification(X_train, y_train, X_test, k=3)
print(predictions) # Ожидаемый результат: [0, 1]
Решение задачи
from sklearn.neighbors import KNeighborsClassifier
def knn_classification(X_train, y_train, X_test, k=3):
model = KNeighborsClassifier(n_neighbors=k)
model.fit (X_train, y_train)
return model.predict(X_test)
# Пример использования:
import numpy as np
X_train = np.array([[1, 2], [2, 3], [3, 4], [5, 5]])
y_train = np.array([0, 0, 1, 1])
X_test = np.array([[2, 2], [4, 4]])
predictions = knn_classification(X_train, y_train, X_test, k=3)
print(predictions) # Ожидаемый результат: [0, 1]
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2👎1🐳1
Data-analyst (junior)
Power BI разработчик
Junior Data Analyst
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2