Вот очень простое объяснение для тех, кто не хочет вдаваться в сложную математику, но и не готов принимать эту ключевую технологию как магию, которая просто работает. Конечно, никакого волшебства тут и нет — идея на самом деле довольно проста..
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
В статье — разбор, почему собирать платформу инференса LLM с нуля не всегда разумно, и как MWS GPT помогает запускать большие языковые модели проще, быстрее и без лишнего сумасшествия.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Статья продолжает разбор моделирования температурного временного ряда с двойной сезонностью. Основное внимание уделено подбору оптимальных параметров сезонной модели САРПСС для точного описания данных.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Ведущий Python разработчик
Ведущий менеджер AI (Data Scientist)
Senior Data Analyst
Please open Telegram to view this post
VIEW IN TELEGRAM
Алоха товарищи. Тут подкаст вышел интересный. Спикер - Антон Полднев — специалист по рекламным технологиям Яндекса с опытом свыше 10 лет.
В подкасте он рассказывает о своем пути от стажера, который писал на Perl, до руководителя и делится инсайтами разработки высоконагруженных систем.
Он объясняет, как работает рекомендательная система рекламы, как ML помогает предсказывать поведение пользователей и вероятность конверсии для бизнеса. ⠀
Ключевые моменты:
👉 Ответственность за рекламные технологии.
👉 Переход на C++ для повышения производительности.
👉 Внедрение нейросетей и машинного обучения.
👉 Важность командной работы и четкого распределения задач.
👉 Эксперименты и A/B-тесты для оптимизации решений.
Также Антон рассказал про Perforator — opensource-инструмент, который помогает анализировать работу приложений на сервере в реальном времени. С помощью этого инструмента разработчики могут увидеть, как распределяются ресурсы серверов и какие программы расходуют их больше всего.
Ссылки на подкаст
👉 YouTube
👉 VK
👉 Rutube
В подкасте он рассказывает о своем пути от стажера, который писал на Perl, до руководителя и делится инсайтами разработки высоконагруженных систем.
Он объясняет, как работает рекомендательная система рекламы, как ML помогает предсказывать поведение пользователей и вероятность конверсии для бизнеса. ⠀
Ключевые моменты:
👉 Ответственность за рекламные технологии.
👉 Переход на C++ для повышения производительности.
👉 Внедрение нейросетей и машинного обучения.
👉 Важность командной работы и четкого распределения задач.
👉 Эксперименты и A/B-тесты для оптимизации решений.
Также Антон рассказал про Perforator — opensource-инструмент, который помогает анализировать работу приложений на сервере в реальном времени. С помощью этого инструмента разработчики могут увидеть, как распределяются ресурсы серверов и какие программы расходуют их больше всего.
Ссылки на подкаст
👉 YouTube
👉 VK
👉 Rutube
Этичные хакеры будут искать уязвимости в нейросетках Яндекса
Яндекс давно привлекает этичных хакеров для повышения безопасности сервисов. Теперь им предлагают найти ошибки в семействах моделей YandexGPT, YandexART и сопутствующей инфраструктуре в рамках нового конкурса багбаунти-программы «Охота за ошибками». Вознаграждение — до миллиона рублей, в зависимости от критичности проблемы.
Искать нужно будет технические уязвимости, которые могут влиять на результат работы нейросетевых моделей. Неточные ответы Алисы не в счет.
Яндекс давно привлекает этичных хакеров для повышения безопасности сервисов. Теперь им предлагают найти ошибки в семействах моделей YandexGPT, YandexART и сопутствующей инфраструктуре в рамках нового конкурса багбаунти-программы «Охота за ошибками». Вознаграждение — до миллиона рублей, в зависимости от критичности проблемы.
Искать нужно будет технические уязвимости, которые могут влиять на результат работы нейросетевых моделей. Неточные ответы Алисы не в счет.
В статье показали, как делали ИИ-помощника на RAG для юристов внутри компании: с какими проблемами столкнулись, как прокачивали точность ответов и экономили память на видеокартах.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Team Lead Data Scientist
Lead Data Engineer
Lead Data Engineer
Please open Telegram to view this post
VIEW IN TELEGRAM
В статье проверяют, как Yandex GPT в голосовом ассистенте ведёт себя с персональными данными. Узнают, что он сливает номер телефона и личную инфу, а потом делает вид, что ничего не знает.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Попал на новый проект и боишься "чужого" кода? Сложно и страшно?
Please open Telegram to view this post
VIEW IN TELEGRAM
Python-разработчик
AI Engineer
DBA | Senior Database Administrator
Please open Telegram to view this post
VIEW IN TELEGRAM
Статья анализирует роль языка и цифровизации в накоплении и передаче знаний. Обсуждаются вызовы структурирования данных, которые, несмотря на успехи машинного обучения и реляционных баз, всё ещё затрудняют полное понимание накопленной информации.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
• Разбей и властвуй: как создать кастомный токенизатор в SpaCy
• Функция property() в Python: добавляем управляемые атрибуты в классы
• Что, если не трансформеры: какие альтернативы главной архитектуре нейросетей у нас есть в 2024 году
• cgroups и namespaces в Linux: как это работает?
• ML-тренды рекомендательных технологий: шесть приёмов, которые помогают угадывать желания пользователя
Please open Telegram to view this post
VIEW IN TELEGRAM
В статье разберут, почему при обучении нейросети loss внезапно становится NaN и модель ломается. Расскажут, какие бывают причины этого трэша и как спасти обучение без лишней боли.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Data Engineer (Junior)
Junior/Middle Data Engineer (Финансовый блок)
Data Analyst (Junior)
Please open Telegram to view this post
VIEW IN TELEGRAM
Организация - это важно. То же относится к ML-проектам. Из каких компонент он должен состоять? Как оформить проект, чтобы всего хватало и было удобно это масштабировать? Рассмотрим организацию по шаблону CookieCutter с примерами.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM