Data Science | Machinelearning [ru]
17.9K subscribers
461 photos
14 videos
29 files
3.33K links
Статьи на тему data science, machine learning, big data, python, математика, нейронные сети, искусственный интеллект (artificial intelligence)

По вопросам рекламы или разработки - @g_abashkin

РКН: https://vk.cc/cJPGXD
Download Telegram
🛍 Как базовые знания кодинга и нейросетей сэкономили нам больше 15 млн ₽ на Wildberries [скрины]

Статья раскрывает процесс полной автоматизации создания карточек товаров для маркетплейсов, используя нейросети, Photoshop и немного креативного подхода. Описаны практические методы, которые экономят тысячи рублей на огромном ассортименте.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2
⚙️ Неувядающая классика или «чёрный ящик»: кто кого в битве за прогноз. Глава вторая. Продолжение

Статья продолжает разбор моделирования температурного временного ряда с двойной сезонностью. Основное внимание уделено подбору оптимальных параметров сезонной модели САРПСС для точного описания данных.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍32🔥1
🚀 Развивай мышление архитектора

Ты можешь быть отличным кодером, но без понимания архитектуры систем твои решения будут ограниченными.

👉 Совет: разбирайся в том, как строятся сложные системы. Читай про микросервисы, масштабирование, кэширование, распределённые базы данных. Даже если ты не архитектор, это сделает тебя сильнее как разработчика.
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍1
👩‍💻 FlexiPrompt: Удобное создание динамических промптов в Python

Статья знакомит с FlexiPrompt — лёгкой библиотекой для генерации промптов в Python при работе с языковыми моделями. Рассмотрены её преимущества: быстрая интеграция, гибкая настройка диалога и возможность создания нескольких агентов в одной LLM.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3
👩‍💻 Задачка по Python

Напишите функцию, которая принимает список email-адресов и возвращает уникальные домены из этого списка. Домен — это часть адреса после символа @.

➡️ Пример:

["user1@example.com", "user2@test.com", "user3@example.com", "user4@sample.com"]

#{"example.com", "test.com", "sample.com"}


Решение задачи ⬇️

def get_unique_domains(emails):
domains = {email.split('@')[1] for email in emails}
return domains

# Пример использования:
emails = ["
user1@example.com", "user2@test.com", "user3@example.com", "user4@sample.com"]
result = get_unique_domains(emails)
print(result) # Ожидаемый результат: {'
example.com', 'test.com', 'sample.com'}
Please open Telegram to view this post
VIEW IN TELEGRAM
3👎1
🤔 Prompt Me One More Time. Учим LLM строить графы знаний из текстов

Статья описывает метод, разработанный для автоматического наполнения графов знаний с помощью LLM, что снижает вероятность «галлюцинаций» и повышает точность ответов. Решение Prompt Me One More Time подробно представлено на TextGraphs-17 конференции ACL-2024.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3
👩‍💻 Задачка по Python

Напишите функцию, которая принимает список чисел и возвращает все значения, которые являются выбросами. Выбросы определяются как значения, которые находятся ниже первого квартиля (Q1) минус 1.5 * IQR или выше третьего квартиля (Q3) плюс 1.5 * IQR, где IQR — межквартильный размах.

➡️ Пример:

Входной список:
[10, 12, 14, 15, 15, 16, 16, 16, 17, 18, 19, 100]

Ожидаемый вывод:
[100]


Решение задачи ⬇️

import numpy as np

def find_outliers(data):
q1 = np.percentile(data, 25)
q3 = np.percentile(data, 75)
iqr = q3 - q1
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
return [x for x in data if x < lower_bound or x > upper_bound]

# Пример использования:
input_data = [10, 12, 14, 15, 15, 16, 16, 16, 17, 18, 19, 100]
result = find_outliers(input_data)
print(result) # Ожидаемый результат: [100]
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42
🔎 Подборка вакансий для джунов

ML\AI & Python Developer (Junior)
🟢Python, ML (scikit-learn, PyTorch, TensorFlow или аналоги), API, интеграции, Pandas, NumPy
🟢от 60 000 до 80 000 ₽ | 1–3 года

Junior Data Analyst
🟢SQL, Microsoft Excel, Python (ETL), визуализация данных
🟢от 80 000 до 120 000 ₽ | 1–3 года

Junior Data Analyst
🟢SQL, базы данных (MySQL, PostgreSQL), Python (pandas, numpy, matplotlib), инструменты визуализации данных (Looker Studio, Metabase, Power BI и др.)
🟢до 87 000 ₽ | 1–3 года
Please open Telegram to view this post
VIEW IN TELEGRAM
2
➡️ Семантическая сегментация: самый полный гайд

Статья раскрывает, как семантическая сегментация помогает машинам «видеть», разбивая изображение на классы объектов. Обсуждаются её применение в автономных авто, медицине и обработке спутниковых снимков для точного распознавания контекста.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥1
👩‍💻 Как работает модуль os в Python для работы с файловой системой?

Модуль os в Python предоставляет инструменты для взаимодействия с операционной системой. С его помощью можно управлять файлами и директориями, получать информацию о системе и переменных окружения, а также выполнять системные команды. Этот модуль особенно полезен для кроссплатформенных сценариев.

➡️ Пример:

import os

# Получение текущей директории
current_dir = os.getcwd()
print('Текущая директория:', current_dir)

# Создание новой директории
os.mkdir('new_folder')
print('Создана директория new_folder')


🗣 os позволяет удобно и кроссплатформенно работать с файловой системой, выполнять команды и настраивать окружение.
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍1
📝 Подборка вакансий для мидлов

Data Engineer (Middle)
Python, SQL, PostgreSQL, Kubernetes, Apache Kafka, MongoDB, RabbitMQ
до 180 000 ₽ | 1–3 года

Data Scientist (middle)
SQL, PostgreSQL, Apache Spark, Математическая статистика, A/B тестирование
Уровень дохода не указан | 1–3 года

Data Scientist (Моделирование РБ)
SQL, Python, Apache Spark
Уровень дохода не указан | 1–3 года
Please open Telegram to view this post
VIEW IN TELEGRAM
1
🤔 3750 дней разработки AI или почему боты всё ещё не захватили покер

Статья рассматривает создание AI для покера (Техасского безлимитного холдема) и анализирует его сложность как модели бизнес-отношений. Обсуждаются метрики и стратегии, которые игроки используют в изменяющемся контексте для принятия решений.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥1
👩‍💻 Разрабатываем первое AI приложение

Статья анализирует роль языка и цифровизации в накоплении и передаче знаний. Обсуждаются вызовы структурирования данных, которые, несмотря на успехи машинного обучения и реляционных баз, всё ещё затрудняют полное понимание накопленной информации.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
5
📝 Подборка вакансий для сеньоров

Senior Data Scientist (LLM)
Python, NLP, PyTorch
Уровень дохода не указан | Старший (Senior)

Senior Data Scientist
Python, NLP, PyTorch, Linux, Pandas
Уровень дохода не указан | Старший (Senior)

Data-инженер DWH в Маркет
Python, SQL
Уровень дохода не указан | Старший (Senior)
Please open Telegram to view this post
VIEW IN TELEGRAM
2
🤔 Практика: мой опыт интеграции более 50 нейронных сетей в один проект

Статья основана на полутора годах работы по внедрению нейронных сетей в веб-приложение с открытым исходным кодом. В ней собраны практические лайфхаки для решения реальных задач и преодоления сложностей, с которыми сталкиваются разработчики.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
7🔥1
Что такое Overfitting и как его избежать в моделях машинного обучения?

Overfitting (переобучение) возникает, когда модель слишком хорошо запоминает обучающие данные, включая шум, и теряет способность обобщать информацию на новых данных. Это приводит к высокому качеству на обучающем наборе, но плохим результатам на тестовых данных.

➡️ Основные способы предотвращения Overfitting:

1. Регуляризация:
• L1 и L2-регуляризация добавляют штраф к сложным моделям.
• Уменьшают коэффициенты модели, предотвращая избыточное подстраивание.

2. Dropout (для нейронных сетей):
• Исключение случайных нейронов на этапе обучения.

3. Снижение сложности модели:
• Использование меньшего числа признаков или более простых алгоритмов.

4. Увеличение данных:
• Генерация новых данных или увеличение объёма обучающей выборки.


➡️ Пример:

from sklearn.linear_model import Ridge
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_diabetes

# Загружаем данные
data = load_diabetes()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42)

# Создаём модель с регуляризацией (Ridge)
ridge = Ridge(alpha=1.0)
ridge.fit(X_train, y_train)

# Оцениваем качество
train_score = ridge.score(X_train, y_train)
test_score = ridge.score(X_test, y_test)
print(f"Train Score: {train_score}, Test Score: {test_score}")


🗣️ В этом примере Ridge-регрессия с параметром регуляризации alpha=1.0 помогает предотвратить переобучение, улучшая обобщающую способность модели.

🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥1
➡️ Путь разметки данных для NER: от Open Source до Prodigy

Статья посвящена созданию обучающей выборки для NER. Описан опыт разметки данных с использованием Open Source инструментов и Prodigy, профессионального решения для ускорения процесса создания наборов данных.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3
🖥 Руководство по созданию приложения для поиска данных на основе агента GraphRAG

Статья описывает приложение, объединяющее GraphRAG и AutoGen-агентов с локальными LLM от Ollama для автономного встраивания и вывода. Рассмотрены ключевые аспекты: интеграция знаний, настройка LLM, вызов функций и интерактивный интерфейс.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍1
🧩 Работай с кодом, как с историей

Читаешь старый код и не понимаешь, как он дошёл до жизни такой?

👉 Совет: анализируй коммиты, историю изменений и комментарии к задачам. Это поможет понять, почему код стал таким, а не просто принять его как данность. Иногда не код плохой — просто контекст утерян.
Please open Telegram to view this post
VIEW IN TELEGRAM
12