• Эволюция архитектур нейросетей в компьютерном зрении: сегментация изображений
• Заяц не вырастет в акулу. Или секреты гибкой инженерной культуры от Александра Бындю
• Все, пора увольняться: что я поняла после работы в токсичных командах
• Базовое программирование, или Почему джуны не могут пройти к нам собеседование
• Я стал аналитиком, потому что не смог быть программистом
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤2🐳2
Статья исследует возможность аутентификации пользователей GPT-чата во внешних приложениях. Рассматривается голосовое взаимодействие и альтернативный способ аутентификации через пароли вместо OAuth 2.0.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍1🐳1
Статья объясняет, как управлять зависимостями и изолировать проекты в Python. Рассматриваются виртуальные окружения, работа с разными версиями Python, примеры из практики и лучшие подходы для разработки.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4
Ты можешь быть крутым специалистом, но если на рутинные действия уходит куча времени, ты теряешь продуктивность.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤3
Data Engineer
Marketing analyst
Data Engineer
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6
Это коллекция из 7 моих любимых промптов для ChatGPT (и моих самых используемых промптов), которые вы можете добавить в любой промпт и мгновенно сделать его в 10 раз лучше.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11❤1
Напишите функцию на Python, которая принимает обучающий набор данных, тестовый набор данных и значение 𝑘, а затем использует алгоритм k-ближайших соседей (kNN) для классификации тестовых данных. Функция должна возвращать предсказанные метки для тестового набора данных.
Пример:
import numpy as np
X_train = np.array([[1, 2], [2, 3], [3, 4], [5, 5]])
y_train = np.array([0, 0, 1, 1])
X_test = np.array([[2, 2], [4, 4]])
predictions = knn_classification(X_train, y_train, X_test, k=3)
print(predictions) # Ожидаемый результат: [0, 1]
Решение задачи
from sklearn.neighbors import KNeighborsClassifier
def knn_classification(X_train, y_train, X_test, k=3):
model = KNeighborsClassifier(n_neighbors=k)
model.fit (X_train, y_train)
return model.predict(X_test)
# Пример использования:
import numpy as np
X_train = np.array([[1, 2], [2, 3], [3, 4], [5, 5]])
y_train = np.array([0, 0, 1, 1])
X_test = np.array([[2, 2], [4, 4]])
predictions = knn_classification(X_train, y_train, X_test, k=3)
print(predictions) # Ожидаемый результат: [0, 1]
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4👍1👎1
• Смарт-функции в Алисе: как LLM помогает понять, чего хочет пользователь
• Сбер выкладывает GigaChat Lite в открытый доступ
• История YOLO – самой известной архитектуры компьютерного зрения
• Магия простоты: как мы улучшили отображение общественного транспорта на карте
• Обучение и fine-tuning моделей простым языком: зачем, как, где
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤1
Масштабирование ИИ-систем долго считалось ключом к их развитию. Однако последние отчёты ставят это под сомнение: ROI от увеличения мощности снижается, а гипотеза «чем больше, тем лучше» теряет актуальность.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🐳2❤1👍1
Продуктовый аналитик / Data Analyst (junior)
Разработчик Back-End Java / BigData (Junior to Senior)
Junior Data Analyst
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍1
Техподдержка — важный контакт с клиентами, но небольшие отделы не всегда справляются с нагрузкой. В статье обсуждаются чат-боты и нейросети (LLM и RAG) для автоматизации процессов и улучшения работы поддержки.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🐳3
datetime
в Python и зачем он используется?Модуль
datetime
позволяет работать с датами и временем, включая их создание, форматирование и вычисление разницы между ними. Это полезно для задач, связанных с обработкой временных данных.from datetime import datetime, timedelta
# Текущая дата и время
now = datetime.now()
print("Сейчас:", now)
# Добавляем 7 дней к текущей дате
future_date = now + timedelta(days=7)
print("Через неделю:", future_date.strftime("%Y-%m-%d"))
🗣️ В этом примере datetime.now() получает текущую дату и время, а timedelta позволяет прибавить 7 дней. Метод strftime() форматирует дату в читаемый строковый формат.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤1🔥1
Data-аналитик
•
Python, SQL, Apache Hadoop, Kubernetes, Docker•
Уровень дохода не указан | 1–3 годаData-инженер
•
Python, Greenplum, Apache Airflow, Apache Spark, ETL, Apache Hadoop, Linux, PostgreSQL, Kubernetes, SQL•
Уровень дохода не указан | 1–3 годаData Scientist
•
Python, pandas, NumPy, scikit-learn, matplotlib, SQL, Hadoop, PySpark, BitBucket, Jira, Agile•
Уровень дохода не указан | 3–6 летPlease open Telegram to view this post
VIEW IN TELEGRAM
❤2
Детальный разбор 10 самых перспективных инструментов для работы с ИИ в 2025 году. От создания умных ассистентов до построения мощных RAG-систем — разбираем возможности, сравниваем производительность, безопасность и простоту интеграции каждого решения.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1🔥1
Напишите функцию на Python, которая принимает путь к текстовому файлу и возвращает словарь с подсчётом количества уникальных слов. Слова должны сравниваться без учёта регистра, а знаки препинания должны быть удалены.
Пример:
# Содержимое файла example.txt:
# "Hello, world! This is a test. Hello again."
result = count_words_in_file("example.txt")
print(result)
# Ожидаемый результат:
# {'hello': 2, 'world': 1, 'this': 1, 'is': 1, 'a': 1, 'test': 1, 'again': 1}
Решение задачи
import string
from collections import Counter
def count_words_in_file(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
text =f.read ().lower()
text = text.translate(str.maketrans('', '', string.punctuation))
words = text.split()
return dict(Counter(words))
# Пример использования
result = count_words_in_file("example.txt")
print(result)
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤1👎1🔥1
Как машинное обучение помогает управлять ускорителями частиц? В статье раскрываются примеры применения нейронных сетей, обучения с подкреплением и байесовской оптимизации для стабилизации и настройки пучков частиц.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2🔥2
PyTorch — это мощный и гибкий фреймворк для машинного обучения, широко используемый для создания нейронных сетей. Он особенно популярен благодаря простоте использования, динамическим вычислительным графам и богатой экосистеме инструментов для обучения моделей.
В этой статье мы реализуем собственную библиотеку машинного обучения на NumPy!
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍2
Data Engineer (Golang)
•
Golang, ClickHouse, MySQL, MongoDB, Kubernetes, HTTP/gRPC API, Apache Kafka, Redis•
Уровень дохода не указан | от 3 летData Scientist NLP (портал gosuslugi.ru)
•
Python 3, numpy, pandas, scipy, sklearn, PyTorch, NLTK, transformers, FastAPI, Docker, Spark/Hadoop•
Уровень дохода не указан | от 1 годаSenior Data Engineer
•
Apache Hadoop, Spark (batch/streaming), Scala, SQL, Parquet, Hive, Kafka, HBase, ClickHouse, PostgreSQL, Airflow, Zeppelin, Jupyter, S3 MinIO•
Уровень дохода не указан | от 5 летSenior Python Dev (AI, Big Data, LLM)
•
Python, PostgreSQL, Big Data, AI, ML, ClickHouse, Time Series, Go•
от 3 000 $ | от 5 летPlease open Telegram to view this post
VIEW IN TELEGRAM
❤3🐳1
• Вся правда о еженедельных созвонах, или Зачем переливать из пустого в порожнее?
• Тяжела и неказиста жизнь простого RnD. Часть первая: как работают с новыми технологиями в крупных компаниях
• Прийти на внедренный проект на этапе развития системы: как аналитику быстро погрузиться в процессы
• Как гуманитарию подойти к IT: из переводчика в технические писатели
• Поздравляем, вы DevOps-инженер. Как найти себя в необъятном мире ИТ
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4
Исследование Anthropic показывает, как их ИИ Claude мог притворяться злым, чтобы избежать «переобучения». Модель следовала поддельным документам для бесплатных пользователей, но сопротивлялась для премиум-аудитории.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2🐳1