В статье рассматриваются ключевые особенности новой мультимодальной модели DeepSeek Janus-7B, которая, по заявлениям, превосходит популярные AI-инструменты, такие как DALL-E 3 и Stable Diffusion. Подробно анализируются её уникальные технические решения и возможности.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8👍3🐳3
Overfitting (переобучение) возникает, когда модель слишком хорошо запоминает обучающие данные, включая шум, и теряет способность обобщать информацию на новых данных. Это приводит к высокому качеству на обучающем наборе, но плохим результатам на тестовых данных.
1. Регуляризация:
• L1 и L2-регуляризация добавляют штраф к сложным моделям.
• Уменьшают коэффициенты модели, предотвращая избыточное подстраивание.
2. Dropout (для нейронных сетей):
• Исключение случайных нейронов на этапе обучения.
3. Снижение сложности модели:
• Использование меньшего числа признаков или более простых алгоритмов.
4. Увеличение данных:
• Генерация новых данных или увеличение объёма обучающей выборки.
from sklearn.linear_model import Ridge
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_diabetes
# Загружаем данные
data = load_diabetes()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42)
# Создаём модель с регуляризацией (Ridge)
ridge = Ridge(alpha=1.0)
ridge.fit(X_train, y_train)
# Оцениваем качество
train_score = ridge.score(X_train, y_train)
test_score = ridge.score(X_test, y_test)
print(f"Train Score: {train_score}, Test Score: {test_score}")
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2🔥1
Аналитик SQL / Data Analyst
•
SQL, Python, MySQL, PostgreSQL, Yandex DataLens•
от 100 000 ₽ | 1+ годML-инженер
•
Python, PyTorch, TensorFlow, Linux, Git, Bash•
от 100 000 ₽ | 3+ годаMachine Learning Engineer / Media AI Agents
•
Python, PyTorch, TensorFlow, Hugging Face, Docker, RESTful API, Pandas•
от 2 500 до 5 000 $ | 3+ годаPlease open Telegram to view this post
VIEW IN TELEGRAM
❤2
В этой статье я рассказываю про основные концепции, типы обучения, типы задач в машинном обучении и также делаю постановку задачи машинного обучения (МО). Все это я рассказываю в своем стиле и понимании.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9👍1
На Хабре вышла статья о том, как команда API Яндекс Карт применила современные методы машинного обучения в задаче геокодирования. Новая архитектура Геокодера построена на базе active learning и contrastive learning, что позволяет быстро адаптировать инструмент для разных стран. Он способен конвертировать текстовые запросы из поисковой строки в координаты, даже если в них есть ошибки, опечатки или народные названия.
Инструмент показал существенное улучшение метрик в Казахстане: +14% rel@1 и −18% has-irrel@10.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
Хабр
Как с помощью deep learning мы построили Геокодер, масштабируемый для разных стран
Давным‑давно, когда мир ML состоял из бустингов, линейных моделей и статистических подходов, перед нашей командой API Яндекс Карт стояла задача сделать качественный Геокодер. Это алгоритм,...
❤7🔥6🐳2👍1
Статья объясняет различия между физически обоснованными моделями и моделями, основанными на данных, с примерами задач машинного обучения. Рассматривается подход к обработке данных, выбору моделей и их обучению.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥1
В этой статье я рассказываю про линейную регрессию, свойства, которыми должны обладать данные для модели, процесс обучения, регуляризацию, метрики качества. Кроме чистой теории я показываю как это все реализовать. Я рассказываю все в своем стиле и понимании - с инженерной точки зрения, с точки зрения того, как реализовывать с нуля.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12❤4
Инженер по данным / Data Scientist (Senior Data Engineer, удалённо)
•
Git, SQL, Python, PostgreSQL, Docker, Nginx, Elasticsearch•
от 300 000 до 450 000 ₽ | 3+ годаData Engineer
•
MongoDB, SQL, Python, Pandas•
Уровень дохода не указан | 5+ летSenior Data analyst
•
SQL, Apache Airflow, Python, BI•
Уровень дохода не указан | 3+ годаPlease open Telegram to view this post
VIEW IN TELEGRAM
❤2👍1🐳1
• Как продакт-менеджеру учить английский: план, сроки, советы
• Иллюзия прогресса: почему мне не удалось дать студентам-айтишникам реальный опыт
• Interview copilots: как кандидаты используют ChatGPT на интервью
• Моя история входа в IT: как я ломал стены своих ограничений
• Как мы разработали систему грейдинга для системных аналитиков
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5
Forwarded from Технологические конкурсы Up Great
🚗 Еще несколько лет назад лидары были громоздкими приборами, которые произвели революцию в беспилотном транспорте. Как любая технология, LiDar прошла стадии от НИОКР до массового внедрения и снижения стоимости. Сегодня лидары используются в большинстве видов беспилотного транспорта: от автомобилей и самолетов до роботов-доставщиков.
📈 Компания Hesai сообщила о взрывном росте производительности: в декабре 2024 года Hesai стала первым в мире производителем лидаров, который выпускает 100 000 устройств в месяц. За месяц Hesai выпустила 10 тыс. флагманских лидаров AT128. Такой производительности удалось достичь после запуска автоматизированной линии, объединившей 100 технологических процессов, 90% из которых выполняют роботы. Это только начало роста компании, лидера на рынке «бытовых» лидаров.
Весной прошлого года компания представила первый в истории компактный лидар для автомобилей — модель ET25, толщина которого составляет всего 48 мм, вдвое меньше габаритов флагманского AT128. Главное преимущество новинки в том, что ET25 располагается за лобовым стеклом и не портит экстерьер автомобиля внешним модулем, что является недостатком предыдущих моделей. Такое решение стало возможным благодаря сотрудничеству Hesai с производителем высокопрозрачных автомобильных стекол Fuyao: эффективность прибора снизилась всего на 10%, несмотря на возможные помехи от лобового стекла, а дальность действия по-прежнему составляет 225 м, что достаточно для мониторинга дорожной обстановки.
Наконец, на середину 2025 года намечен старт производства модели ATX. Это компактный лидар, который фильтрует естественные помехи (дождь, туман, смог и т.д.) с точностью до 99,9%. Дальность его действия составляет 300 м.
Подписывайтесь 👉Технологические конкурсы НТИ Up Great
#Зарубежный_опыт
📈 Компания Hesai сообщила о взрывном росте производительности: в декабре 2024 года Hesai стала первым в мире производителем лидаров, который выпускает 100 000 устройств в месяц. За месяц Hesai выпустила 10 тыс. флагманских лидаров AT128. Такой производительности удалось достичь после запуска автоматизированной линии, объединившей 100 технологических процессов, 90% из которых выполняют роботы. Это только начало роста компании, лидера на рынке «бытовых» лидаров.
Весной прошлого года компания представила первый в истории компактный лидар для автомобилей — модель ET25, толщина которого составляет всего 48 мм, вдвое меньше габаритов флагманского AT128. Главное преимущество новинки в том, что ET25 располагается за лобовым стеклом и не портит экстерьер автомобиля внешним модулем, что является недостатком предыдущих моделей. Такое решение стало возможным благодаря сотрудничеству Hesai с производителем высокопрозрачных автомобильных стекол Fuyao: эффективность прибора снизилась всего на 10%, несмотря на возможные помехи от лобового стекла, а дальность действия по-прежнему составляет 225 м, что достаточно для мониторинга дорожной обстановки.
Наконец, на середину 2025 года намечен старт производства модели ATX. Это компактный лидар, который фильтрует естественные помехи (дождь, туман, смог и т.д.) с точностью до 99,9%. Дальность его действия составляет 300 м.
Подписывайтесь 👉Технологические конкурсы НТИ Up Great
#Зарубежный_опыт
❤3👍1
Статья рассказывает о новой AI-модели DeepSeek-R1-Lite, созданной для логических рассуждений. Рассматриваются её возможности, тестирование и перспективы применения в задачах анализа и вычислений.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👎4❤3
argparse
в Python?argparse
— это стандартный модуль Python для работы с аргументами командной строки. Он позволяет удобно разбирать, валидировать и документировать входные параметры.import argparse
# Создаём парсер аргументов
parser = argparse.ArgumentParser(description="Пример работы с argparse")
parser.add_argument("--name", type=str, help="Имя пользователя")
parser.add_argument("--age", type=int, help="Возраст пользователя")
# Разбираем аргументы
args = parser.parse_args()
# Используем аргументы
print(f"Привет, {args.name}! Тебе {args.age} лет.")
🗣️ В этом примере argparse разбирает аргументы --name и --age, переданные через командную строку. Это упрощает создание CLI-приложений.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2
Этот пост предназначен для абсолютных новичков и предполагает НУЛЕВЫЕ предварительные знания машинного обучения. Мы разберемся, как работают нейронные сети, и реализуем одну из них с нуля на Python.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17❤3
Интервью с основателем DeepSeek о том, как их модель v2 бросила вызов OpenAI, сделав Китай лидером в гонке ИИ. Как стартапу удалось обойти гигантов и что ждёт индустрию дальше?
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👎7👍3❤1🔥1
Когда исправляешь баг, проверь, не скрывается ли за ним системная проблема.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8👍1
Product Analyst
Data Quality Analyst (Financial Data)
Senior Python Developer
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3🐳1
Статья описывает разработку «умного» помощника для клиентской поддержки интернет-магазина. Рассматриваются проблемы, с которыми сталкивался клиент, и пути их решения с помощью ИИ.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤2
Напишите функцию, которая принимает
pandas.DataFrame
и название столбца, а затем возвращает новый DataFrame
, в котором выбросы (значения, выходящие за пределы 1.5 межквартильного размаха) удалены.Пример:
import pandas as pd
data = pd.DataFrame({
"values": [10, 12, 15, 100, 14, 13, 11, 102, 16]
})
cleaned_data = remove_outliers(data, "values")
print(cleaned_data)
# Ожидаемый результат:
# values
# 0 10
# 1 12
# 2 15
# 4 14
# 5 13
# 6 11
# 8 16
Решение задачи
import pandas as pd
def remove_outliers(df, column):
Q1 = df[column].quantile(0.25)
Q3 = df[column].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]
# Пример использования:
data = pd.DataFrame({
"values": [10, 12, 15, 100, 14, 13, 11, 102, 16]
})
cleaned_data = remove_outliers(data, "values")
print(cleaned_data)
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12❤3🐳2🔥1
• Построение базы знаний компании и поиска документов на LLM и RAG
• Что побуждает LLM врать и как этого избежать в своих продуктах
• Ломаем капчу 4Chan
• На чём учатся современные модели машинного перевода: опыт команды Яндекс Переводчика
• Gemini вырывается вперед, Китай спамит моделями, в Minecraft запустили AI-агентов: главные события ноября в сфере ИИ
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2🔥1
Статья объясняет, как внедрить ML-модель, обученную на Python, в сервис на Go, используя ONNX. Рассматривается пример работы с моделью seara/rubert-tiny2-russian-sentiment для анализа сентимента текста.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1
Напишите функцию, которая принимает
pandas.DataFrame
и возвращает новый DataFrame
, где все пропущенные значения (NaN
) в числовых столбцах заменены на медиану соответствующего столбца.Пример:
import pandas as pd
data = pd.DataFrame({
'age': [25, 30, None, 45, 50],
'salary': [50000, 60000, 55000, None, 65000],
'city': ['NY', 'LA', 'NY', 'SF', 'LA']
})
cleaned_data = fill_missing_with_median(data)
print(cleaned_data)
age salary city
0 25.0 50000.0 NY
1 30.0 60000.0 LA
2 37.5 55000.0 NY
3 45.0 57500.0 SF
4 50.0 65000.0 LA
Решение задачи
import pandas as pd
def fill_missing_with_median(df):
df_filled = df.copy()
for col in df_filled.select_dtypes(include='number').columns:
median = df_filled[col].median()
df_filled[col].fillna(median, inplace=True)
return df_filled
# Пример использования:
data = pd.DataFrame({
'age': [25, 30, None, 45, 50],
'salary': [50000, 60000, 55000, None, 65000],
'city': ['NY', 'LA', 'NY', 'SF', 'LA']
})
cleaned_data = fill_missing_with_median(data)
print(cleaned_data)
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤2