Dealer.AI
14.4K subscribers
673 photos
45 videos
16 files
702 links
Жоский ИИ Дядя
Твой личный поставщик AI 🦾🤖
Канал о мире интересного AI: GenAI, RecSys, поиск, classic ML, бизнес приклад и ai-meme👾

Для связи @dealer_ai
(реклама и консультации)

Head of ML, AI.
Kaggle: https://www.kaggle.com/andrilko

РКН: 6348592885
Download Telegram
Интересное про RL, от рок-н-роллщиков из жёлтого банка. 👇
Forwarded from Жёлтый AI
ICML День #2: Туториалы

(Прим. редакции – @vkurenkov ушел спать прежде чем выдал нам впечатления о втором дне, видимо очень устал тусить на ICML. Поэтому пост с запозданием. Он предупредил нас, что на третий день пойдет кутить на вечеринку WandB, поэтому третий день конференции тоже ждем завтра).

Основная часть конференции с постерными сессиями начинается завтра (самое интересное!), а сегодня был день туториалов. Это в целом мало чем отличается от первого дня, только вместо того, что приходят компании и рассказывают про то как они применяют крутые технологии у себя, тут приходят рисерчеры и инженеры и делают интро в какую-то конкретную хайповую технологию.

В этот раз были — RLHF от HuggingFace + доклад по сбору данных от Toloka AI; графовые нейронные сети на TensorFlow (туда я не пошел); последние достижения в теории нейронных сетей; и обучение agent-centric латентных репрезентаций динамики в RL’e (сюда я пошел).

Скажу честно, если хоть сколько-то читали про эти штуки, то на докладе будет турбо-скучно, потому что никаких деталей там особо не раскрывается, но из плюсов — можно задать сразу интересующие вопросы. Вот, например, что Nathan Lambert из HuggingFace рассказывал про RLHF:

(1) Модель награды не тренируют больше одной эпохи, потому что оно дико оверфитится.
(2) Существующие трюки из RL’я далеко не всегда переносятся на RLHF, поэтому выдумывают новые.
(3) Хороший бейзлайн — вместо PPO использовать Best-of-N или Rejection Sampling.

P.S. в нулевой день мне понравилось больше, там я постучал в гонг и увидел 5 морских черепах на берегу — лучше всяких RLHF 🤙️
👍8
Forwarded from ds girl
через неделю после релиза я полезла читать технический репорт по второй ламе 👍 много уже было сказано в первые 10 минут с момента ее публикации, но самое интересное кмк не осветили, а именно, как получилось завести рлхф в чатбот версии. в отличие от папиры OpenAI, где все легко и просто, у команды GenAI было примерно 5 версий RLHF с разными конфигурациями (под конец они как будто уже все, что можно закидывали в пайплайн лишь бы работало). мои заметки:

🥖при сборе данных для reward модели было использовано несколько вариантов лламы с разными параметрами температуры. далее в репорте они также говорят, что на самом деле нет доказательств, что нужно семплить только от текущей модели, потенциально можно брать другие пригодные чекпоинты, а можно и открытые preference датасеты.

🥖дополнительно в разметке preference датасета использовалась шкала, насколько ответ лучше (significantly, better, slightly, negligibly, unsure). из-за ее введения немного модифицировалась функция потерь для ранжирования - из награды за выбранный ответ вычитается награда отклоненного ответа (как обычно) и дополнительная погрешность в зависимости от близости этих ответов по шкале (большая погрешность для значительно разных ответов и маленькая для похожих).

🥖reward модели на самом деле было две - Helpfulness и Safety. обучались они на разных данных, где-то могли быть пересечения (т. к. датасеты миксовались в разных пропорциях). далее результаты этих моделей объединялись

🥖на этапе непосредственного RLHF использовали сразу два алгоритма - сначала Rejection Sampling, затем PPO. с помощью RS выбирали лучшего кандидата из K примеров, затем применяли РРО

🥖как научить модель не забывать промпт (веди себя как …, отвечай только эмодзи и тд)? к уже имеющимся диалогам добавляем системный промпт в виде инструкции, как модель должна себя вести, к каждой реплике. затем с помощью полиси модели (из последнего шага RLHF) генерируем ответы, опять же, к каждой реплике. а теперь убираем системный промпт везде, кроме самого первого запроса пользователя. на всякий случай, дообучая модель в режиме sft, лосс на все предыдущие токены (включая системный промпт), кроме текущей реплики, зануляется. идея одолжена из context distillation и называется ghost attention

🥖ну и самое важное, если не хотите часто упоминать своих конкурентов, ссылайтесь на них как closed-source models
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥15👍32
Немного о себе...

*ночной юмор*
😁27
Неделя начинается с идей. Heroes of Might and Magic NLP.

Как-то после диалога в одном AI чатике, возникла мысля про насмотренность reward моделей.

В чем суть? Фишка в том, что количество качественных оценок preferences , т.е. размера сета для обучения reward не так уж и много. Всё-таки, это люди метят,а это дорого, долго, мало.

Возникает вопрос, а что делать если у фразы генерации есть несколько хороших парафраз которые reward не видел и не понимает, что в принципе такое возможно? На таких примерах для других хороших генераций мы будем получать рост ошибки, хотя по идее его и быть не должно.

Мне пришла идея (напишите в комментариях не huinэ ли это):
А давайте будем брать сразу для одного backbone сразу две головы. Одна будет учить preferences, а другая будет брать условные парафразы и в contrastive формате учить задачу сведения embeddings фраз с одним смыслом, разным написанием и разведением фраз про разное.

При этом этот же embeddings head от backbone наш reward берёт для принятия решения задачи ranking preferences. Т.е. у нас задача с двумя тасками и shared weights.

После обучения, мы откидываем голову парафразинга, а оставляем только reward. Т.к. это всё училось одновременно, то моделька теперь как SBERT или LaBSE понимает за то, что у нас бывают в языке фразы схожие по смыслу, но разные по написанию. Т.е. мы так работаем в ту самую насмотренность. Причём брать в качестве таких парафраз не обязательно именно генерации, достаточно брать general сеты а-ля SNLI, MNLI, XNLI. Но, конечно, если у вас есть возможность с генераций майнить норм парафразы надежные - ещё лучше.

Внизу разумеется накаляканная от руки схема.
👍9
Схемка from my h(u)eart
Forwarded from MarksRemarks (Mark Baushenko)
This media is not supported in your browser
VIEW IN TELEGRAM
Кому знакомо?) Сам лично с таким сталкивался 😃
😁21💯6
Коллеги по цеху подогнали.

Спасибо @nikolaygerasimenko
😁12🥴1
🤡9🔥5🥴32👍2👎2
Славный друже по ML/DL цеху пояснил на "пальцах" за text2image историю. Сам я , конечно, дальше CLIP туда не лазил, поэтому читаю и вам советую 👇
Неделя начинается с побед.

Наши ребята: @qwertysobaka (мой падаван), @danasone. Затащили сорев по NLP от Альфы. На нашей модельке FRED-T5.

UPD. Не стоит забывать и тиммейта ребят @vadimirtlach, нашего подписчика.

Поздравляем! 🦾🤖🕺💃

P.S. если хотите создавать новые версии FRED-T5 или решения на их базе, пишите @DmitryZmitrovich или @nlpcoreteam.

Источник: https://t.me/kaggle_fucker/84

Сорев: https://ods.ai/competitions/nlp-receipts
🔥20👍54🤡2
Юмор в хату ленту. Картина профессиональная..

Спасибо @tagir_analyzes
😁27
Други, @cointegrated, выпустил фикс+обновление encodechka теперь можно смело выбирать лучший энкодер для себя и бенчить свои.

Появился новый лидер multilingual-e5. Кстати, у нас тоже данная модель показывает топ результаты. Если говорить вкратце, me5 это LAbSE на максималках, особенности обучения:

- чистка всякого разного а-ля reddit, CCrwal, stackexchange и др.
- предобучение в контрастив режиме на CCPairs.
- файнтюн MS-MMARCO.
- за основу взята XLM-RoBERTA (с неё заинитили веса).
- меры качества конечно retrieval'ные.

P. S. Сори за душность, @cointegrated.

Про бенч тут: https://t.me/izolenta_mebiusa/252
14❤‍🔥4
Схема ME-5
https://t.me/betterdatacommunity

Тут в better data community Илья Гусев читает лекцию про закат трансформеров!

Ребят прям сейчас!
🔥5🤡1
Для тех, кто послушал доклад выше.

Конец transformers близко киско

Спасибо @rybolos за идею, @bogdanisssimo за реализацию
😁22🤔2