Нескучный Data Science
🔥 МТС BIG DATA X Лаборатория Машинного обучения 🤩 На фото запечатлены два довольных парня из красных компаний, офисы которых находятся через дорогу, которые только что провели совместный митап. Процесс организации был настолько нативным и синергичным, что…
Отличные новости 🥳
Готовы записи выступлений ребят с нашего митапа!
Горжусь спикерами -- доклады реально были интересные 😎, причем для многих это один из первых опытов публичных выступлений, причем не на маленькую аудиторию -- человек 70-80 в зал поместилось 😊
Спасибо спикерам за доклады, гостям за классную дискуссию и команде организаторов за душевную атмосферу! 👏
UPD: Меня только что поправили -- было 105 человек оффлайн! 🔥
Готовы записи выступлений ребят с нашего митапа!
Горжусь спикерами -- доклады реально были интересные 😎, причем для многих это один из первых опытов публичных выступлений, причем не на маленькую аудиторию -- человек 70-80 в зал поместилось 😊
Спасибо спикерам за доклады, гостям за классную дискуссию и команде организаторов за душевную атмосферу! 👏
UPD: Меня только что поправили -- было 105 человек оффлайн! 🔥
🔥33👍11❤9❤🔥1👏1🦄1
#ML
Когда на собеседованиях спрашивают про сильные стороны -- честно отвечаю что прокрастинация это моя сильная сторона.
Вот неделю откладывал добить текст статьи, а тут как раз свежий обзор вышел -- 22 часа назад. Не прошло и полгода 😆
Для тех кто далек от рекомендашек -- классический сюжет про здоровую прокрастинацию.
Желаю вам спокойных выходных без суеты🐳
Когда на собеседованиях спрашивают про сильные стороны -- честно отвечаю что прокрастинация это моя сильная сторона.
Вот неделю откладывал добить текст статьи, а тут как раз свежий обзор вышел -- 22 часа назад. Не прошло и полгода 😆
Для тех кто далек от рекомендашек -- классический сюжет про здоровую прокрастинацию.
Желаю вам спокойных выходных без суеты🐳
🐳21🔥9❤5👍4🤔1
#ML
В комментах под постом про связь оптимизации BCE и ростом NDCG меня попросили рассказать про связь минимизация логлосс и максимизация ROCAUC 🤓
Начну издалека и разобью ответ на несколько постов.
Не из вредности, а из-за того что в ROCAUC как правило, не углубляются и оттого возможны оптические иллюзии (назовем пока так)🌈
Не верите?
Ну вот для разминки 🏋♂️ пара задачек от Александра Дьяконова
Раз
Два
И одна прямиком из статьи:
Если ваш алгоритм максимизирует ROCAUC, максимизирует ли он одновременно площадь под кривой Precision-Recall (AUCPR или AP == average precision)?
Короткий ответ — нет
Хотя кривые из пространства (FPR, TPR) однозначно переводятся в кривые из пространства (Recall, Precision), более того, если одна ROC-кривая везде лучше (или равна) другой (слева-вверху, в литературе называют dominate 🥊) то и в координатах (Recall, Precision) это сохранится, причем наоборот тоже работает.
Пример двух пересекающихся ROC-кривых, в которых при переводе в (Recall, Precision) радикально меняется соотношение площадей под графиками в статье The Relationship Between Precision-Recall and ROC Curves (2006)
Конечно, таких фокусов хочется избежать 🧙♂️, для этого все же нужно вспомнить про задачу — редко когда нам надо одинаково хорошо уметь ранжировать по всей выборке, чаще именно ранжировать нужно уметь в каком-то регионе (например по FPR), поэтому у ROCAUC множество модификаций — PAUC (Partial AUC), TPAUC, OPAUC, SAUC, gAUC (generalised AUC), GAUC (group AUC), GAUC@k, LAUC@k (limited AUC) и всякие другие.
Здесь снова вспоминается тезис Александра Дьяконова из неопубликованного (а мб он уже опубликовал?) учебника о том что все банки используют GINI (он же ROCAUC) в задаче PD (определения вероятности наступления дефолта), а ROCAUC не то чтобы в этом случае сильно подходит — IMHO, ровно потому что ранжирование интересно уже выше отсечки одобрения кредита (и там калиброванный PD войдет уже в EL).
Но не скорингом единым — PAUC и другие модификации широко используются в рекомендашках и в поиске (да, и в RAG тоже -- на этапе retrieval).
Если хотите с азов 💾, то про сами сами ROC-кривые, их доверительные интервалы, обобщения на мульткласс можно почитать здесь а про связь ROCAUC с вероятностью корректно ранжировать — в журнале по радиологии за 1982 год.
PS: Если с researchgate сложности - маякните единорожкой, выложу pdf’ки в комментариях
PPS: про связь ROCAUC и логлосс уже в следующем посте, пока лишь намекну статьей про DeepFM (таб. 2)
PPPS: уже почти не удивляюсь когда вижу статью с названием Deep ROC analysis <...> в приличном журнале за 2021 год 😱, вот и вы не удивляйтесь этому посту 😆
В комментах под постом про связь оптимизации BCE и ростом NDCG меня попросили рассказать про связь минимизация логлосс и максимизация ROCAUC 🤓
Начну издалека и разобью ответ на несколько постов.
Не из вредности, а из-за того что в ROCAUC как правило, не углубляются и оттого возможны оптические иллюзии (назовем пока так)
Не верите?
Ну вот для разминки 🏋♂️ пара задачек от Александра Дьяконова
Раз
Два
И одна прямиком из статьи:
Если ваш алгоритм максимизирует ROCAUC, максимизирует ли он одновременно площадь под кривой Precision-Recall (AUCPR или AP == average precision)?
Хотя кривые из пространства (FPR, TPR) однозначно переводятся в кривые из пространства (Recall, Precision), более того, если одна ROC-кривая везде лучше (или равна) другой (слева-вверху, в литературе называют dominate 🥊) то и в координатах (Recall, Precision) это сохранится, причем наоборот тоже работает.
Пример двух пересекающихся ROC-кривых, в которых при переводе в (Recall, Precision) радикально меняется соотношение площадей под графиками в статье The Relationship Between Precision-Recall and ROC Curves (2006)
Конечно, таких фокусов хочется избежать 🧙♂️, для этого все же нужно вспомнить про задачу — редко когда нам надо одинаково хорошо уметь ранжировать по всей выборке, чаще именно ранжировать нужно уметь в каком-то регионе (например по FPR), поэтому у ROCAUC множество модификаций — PAUC (Partial AUC), TPAUC, OPAUC, SAUC, gAUC (generalised AUC), GAUC (group AUC), GAUC@k, LAUC@k (limited AUC) и всякие другие.
Здесь снова вспоминается тезис Александра Дьяконова из неопубликованного (а мб он уже опубликовал?) учебника о том что все банки используют GINI (он же ROCAUC) в задаче PD (определения вероятности наступления дефолта), а ROCAUC не то чтобы в этом случае сильно подходит — IMHO, ровно потому что ранжирование интересно уже выше отсечки одобрения кредита (и там калиброванный PD войдет уже в EL).
Но не скорингом единым — PAUC и другие модификации широко используются в рекомендашках и в поиске (да, и в RAG тоже -- на этапе retrieval).
Если хотите с азов 💾, то про сами сами ROC-кривые, их доверительные интервалы, обобщения на мульткласс можно почитать здесь а про связь ROCAUC с вероятностью корректно ранжировать — в журнале по радиологии за 1982 год.
PS: Если с researchgate сложности - маякните единорожкой, выложу pdf’ки в комментариях
PPS: про связь ROCAUC и логлосс уже в следующем посте, пока лишь намекну статьей про DeepFM (таб. 2)
PPPS: уже почти не удивляюсь когда вижу статью с названием Deep ROC analysis <...> в приличном журнале за 2021 год 😱, вот и вы не удивляйтесь этому посту 😆
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥18👍15🦄10❤9
На днях поменяли программу ШАД
Аналитики попросили
Дерево метрик? — очевидное
Универсальный пайп аналитика???
Redash?
Искали в общем что-то полезное.
Без чего аналитик не сможет?
У нас-таки нашелся ответ
Решили добавить колористику а-ля
А что — слайды они рисуют часто
Тем паче чувство прекрасного
И еще же фронты
Набросали примерно структуру
Осталось найти преподавателя
В личке отвечу, пишите
Аналитики попросили
Дерево метрик? — очевидное
Универсальный пайп аналитика???
Redash?
Искали в общем что-то полезное.
Без чего аналитик не сможет?
У нас-таки нашелся ответ
Решили добавить колористику а-ля
А что — слайды они рисуют часто
Тем паче чувство прекрасного
И еще же фронты
Набросали примерно структуру
Осталось найти преподавателя
В личке отвечу, пишите
😁20🔥3🦄2❤1👍1
#кейсы #ML
Занесло вчера в жюри хакатона.
Как всегда — 10 финалистов, комиссия из таких же как я случайных людей (как правило даже дальше от DS чем сами участники — студенты-младшекуры), есть лидерборд с результатами модели на прайвате, и настает время защит.
Ребята рассказывают свои решения, каждый свой кусочек командной презентации, какой-то анализ, файндинги если есть, как модель выбирали, что в итоге получилось. Потом вместе отбиваются от вопросов 💪.
Есть команды посильнее, есть послабее (не поняли что оверфитнулись имея 99,6% «точности»?! в регрессии — на прайвате закономерно оказались последними 😆), но не суть.
Главное наблюдение — комиссии почти параллельно какой у вас результат на лидерборде.
Потому как метрики — это что-то заумное, а вот понятные графики 🤓, уверенный тон 😎 (!!!), хоть какая-то структура презентации, желательно создающая ощущение понятности для члена комиссии 🤡 — прям ключевое.
Скажу, что корреляция (ранговая, для душнил) лидерборда и итогового результата — очень маленькая, а первое место на лидерборде не гарантирует попадание даже в топ-3 по итоговому рангу 🤷♂️.
Ладно, это игрушечный (почти) пример, мб на работе по-другому?
держи карман шире, ага
Хотя счет же не в DS-метриках, а в конкретных заработанных рублях.
Вспомнился случай.
Нанял я как-то к нам толкового парня — выпускника мехмата и MADE (Макс, привет тебе в твоей Канаде! 🇨🇦) с нулевым опытом.
Попросил лида его покурировать на несложной задаче — классификации обратной связи в кампейнинге.
То есть причины отказа клиентского менеджера от отработки лида (либо отказа уже клиента от предложения) распределять по категориям (для этого правда сначала нужно понять что за категории, как они могут быть устроены, мб создать иерархию) — но это все достаточно проходная задача:
⁃ Разобраться с категориями по историческим данным
⁃ Попросить фронтов сделать возможность категории отмечать галочку
⁃ Обработку поля с комментарием все равно оставить — но повесить модель-классификатор.
Не без приключений (детали для краткости опущу), за пару-тройку итераций, парни справились и мы включили этот проект в ближайшее демо 🏆.
На демо всем манагерам интерактивность прям очень понравилась — а давайте напишем в комментарий к лиду «пиво, чипсы, воды» — какая будет причина отказа? Ну и прочие «смешные» 🙄варианты комментариев.
Проходит месяц, премирование тогда было квартальным и наставала пора расставлять оценки ребятам в моем кластере (а там, кроме DS, инженеры, аналитики, сопровожденцы, девопсы, mlопсы, PO, ораклисты и BIщики и тд).
Прошло лет пять, но я до сих пор помню какой разнос я получил за то что поставил «недостаточно высокую» оценку тому «умному DS, который сделал классную модель», при том что в том квартале были реально крутые результаты и по сложности и по фин эффектам 😰.
Поэтому вместо банального «рисуйте классную презентацию» дам чуть менее банальный совет — делайте интерактив, чтобы ваш каналья-манагер что-то осмысленное мог руками поменять (инфляцию, прогнозную цену на продукцию и пр и пр) и получить сиюминутный результат -- в общем, почувстввал себя ребенком и поиграл в новую игрушку 🥁.
Успех DS в бизнесе — к сожалению, гораздо чаще про сторителлинг и игрушки-поделия чем реально трансформация бизнес-линий / процессов с большими эффектами. Увы
Занесло вчера в жюри хакатона.
Как всегда — 10 финалистов, комиссия из таких же как я случайных людей (как правило даже дальше от DS чем сами участники — студенты-младшекуры), есть лидерборд с результатами модели на прайвате, и настает время защит.
Ребята рассказывают свои решения, каждый свой кусочек командной презентации, какой-то анализ, файндинги если есть, как модель выбирали, что в итоге получилось. Потом вместе отбиваются от вопросов 💪.
Есть команды посильнее, есть послабее (не поняли что оверфитнулись имея 99,6% «точности»?! в регрессии — на прайвате закономерно оказались последними 😆), но не суть.
Главное наблюдение — комиссии почти параллельно какой у вас результат на лидерборде.
Потому как метрики — это что-то заумное, а вот понятные графики 🤓, уверенный тон 😎 (!!!), хоть какая-то структура презентации, желательно создающая ощущение понятности для члена комиссии 🤡 — прям ключевое.
Скажу, что корреляция (ранговая, для душнил) лидерборда и итогового результата — очень маленькая, а первое место на лидерборде не гарантирует попадание даже в топ-3 по итоговому рангу 🤷♂️.
Ладно, это игрушечный (почти) пример, мб на работе по-другому?
Хотя счет же не в DS-метриках, а в конкретных заработанных рублях.
Вспомнился случай.
Нанял я как-то к нам толкового парня — выпускника мехмата и MADE (Макс, привет тебе в твоей Канаде! 🇨🇦) с нулевым опытом.
Попросил лида его покурировать на несложной задаче — классификации обратной связи в кампейнинге.
То есть причины отказа клиентского менеджера от отработки лида (либо отказа уже клиента от предложения) распределять по категориям (для этого правда сначала нужно понять что за категории, как они могут быть устроены, мб создать иерархию) — но это все достаточно проходная задача:
⁃ Разобраться с категориями по историческим данным
⁃ Попросить фронтов сделать возможность категории отмечать галочку
⁃ Обработку поля с комментарием все равно оставить — но повесить модель-классификатор.
Не без приключений (детали для краткости опущу), за пару-тройку итераций, парни справились и мы включили этот проект в ближайшее демо 🏆.
На демо всем манагерам интерактивность прям очень понравилась — а давайте напишем в комментарий к лиду «пиво, чипсы, воды» — какая будет причина отказа? Ну и прочие «смешные» 🙄варианты комментариев.
Проходит месяц, премирование тогда было квартальным и наставала пора расставлять оценки ребятам в моем кластере (а там, кроме DS, инженеры, аналитики, сопровожденцы, девопсы, mlопсы, PO, ораклисты и BIщики и тд).
Прошло лет пять, но я до сих пор помню какой разнос я получил за то что поставил «недостаточно высокую» оценку тому «умному DS, который сделал классную модель», при том что в том квартале были реально крутые результаты и по сложности и по фин эффектам 😰.
Поэтому вместо банального «рисуйте классную презентацию» дам чуть менее банальный совет — делайте интерактив, чтобы ваш каналья-манагер что-то осмысленное мог руками поменять (инфляцию, прогнозную цену на продукцию и пр и пр) и получить сиюминутный результат -- в общем, почувстввал себя ребенком и поиграл в новую игрушку 🥁.
Успех DS в бизнесе — к сожалению, гораздо чаще про сторителлинг и игрушки-поделия чем реально трансформация бизнес-линий / процессов с большими эффектами. Увы
❤41💯19👍14🦄3🤯2😁1
Хотя у меня уже давно поменялась фотография и должность, все равно стараюсь не пропускать Data Fusion (разве что в том году наложилось с MachinesCanSee). В этом году думал отсидеться в панели, но в итоге втянули в дебаты, узнаем какой из меня спорщик 😂
А с докладом за BigData МТС будет отдуваться Серега Кузнецов — это CTO нашей гордости — RecSys платформы. Думаю оба дня буду на конфе, про интересное здесь напишу. Если кто хочет очно пересечься / познакомиться — буду рад, приходите 🍺
PS: Если кто потеряется / стесняется — орги поддались общему тренду и запилили бота для знакомств — потестим )
А с докладом за BigData МТС будет отдуваться Серега Кузнецов — это CTO нашей гордости — RecSys платформы. Думаю оба дня буду на конфе, про интересное здесь напишу. Если кто хочет очно пересечься / познакомиться — буду рад, приходите 🍺
PS: Если кто потеряется / стесняется — орги поддались общему тренду и запилили бота для знакомств — потестим )
❤16🔥7👍3🤓2🦄1
Media is too big
VIEW IN TELEGRAM
#кейсы #корпжиза
Пример «делайте интерактив» вместо «рисуйте презентацию» от Миши С
Парни занимались бесчисленной сборкой PoC на модном тогда направлении GenAI (в 20-21 годах, на минуточку) — немного музыку погенерить, где-то голову на изображении пересадить, помощника канальи сделать (который вместо манагера в почте будет отвечать либо «спасибо» либо «проработайте вопрос» 😂😂😂).
Как подвести итоги года работы команды, если весь год состоял из спринтов в разные стороны, конференций, презентаций, лихих кавалерийских наскоков?
Желательно чтобы после этого премии полились как комменты под постом про AI-продактов ?
Все любят подарки, а манагеры особенно, если это не дежурная бутылка / мерч / книжка из библиотеки большого банка(одной я палочку из Гарри Поттера подарил -- но то совсем другая история) .
И вот Миша с парнями дарят своему шефу телефон(ибо нужен андроид, а у шефа айфон) , а на телефоне файтер.
И в файтере шеф — читерский перс 💪, который раздает 🥊 другим топам 🤡 сериями до самого фаталити ☠️.
Естественно, в противники шефу выбрали его начальников и оппонентов 😁, добившись узнаваемости персов по лицу 🫣
Вот и догадайтесь, у кого в департаментебыла годовая премия x2.
Растите продуктовые метрики и прокрашивайте A/B, коллеги 🤓😆🏋♂️
А на видео -- битва двух непримиримых противников -- CDS (AI) vs CTO
Пример «делайте интерактив» вместо «рисуйте презентацию» от Миши С
Парни занимались бесчисленной сборкой PoC на модном тогда направлении GenAI (в 20-21 годах, на минуточку) — немного музыку погенерить, где-то голову на изображении пересадить, помощника канальи сделать (который вместо манагера в почте будет отвечать либо «спасибо» либо «проработайте вопрос» 😂😂😂).
Как подвести итоги года работы команды, если весь год состоял из спринтов в разные стороны, конференций, презентаций, лихих кавалерийских наскоков?
Желательно чтобы после этого премии полились как комменты под постом про AI-продактов ?
Все любят подарки, а манагеры особенно, если это не дежурная бутылка / мерч / книжка из библиотеки большого банка
И вот Миша с парнями дарят своему шефу телефон
И в файтере шеф — читерский перс 💪, который раздает 🥊 другим топам 🤡 сериями до самого фаталити ☠️.
Естественно, в противники шефу выбрали его начальников и оппонентов 😁, добившись узнаваемости персов по лицу 🫣
Вот и догадайтесь, у кого в департаменте
Растите продуктовые метрики и прокрашивайте A/B, коллеги 🤓😆🏋♂️
🔥18👍7🤣6⚡3😁2❤1🫡1🦄1
#кейсы #ML
Нет-нет и попадаются на глаза посты про рост контекстного окна LLM.
И восторженные про 10М токенов и критический ответ про то что не все эти токены будут иметь одинаковую важность для модели и RAG все равно будет жив.Что объединяет авторов таких постов ? Сейчас покажу.
На днях надо было собрать RAG для демонстрации — просто обновить свой прошлогодний семинар. Но раз каждый день в тг поток новостей про новые перехаи ллмок — решил посмотреть как продвинулись методы их оценки.
Потыкавшись по репозиториям Ильи и Константина нашел библиотеку со странным названием giskard ровно для «evaluation of AI systems» как гласит этикетка.
Ну ок, парни используют, 4,5 тыс звездочек на github — что может пойти не так?
Здесь небольшая вставочка — коль скоро RAG про поиск релевантного чанка (кусочка информации) и генерацию ответа на основе него (а чанк добавляется в контекст LLM) — то и метрик можно придумать массу (отдельно на то насколько релевантные чанки достаются, насколько сгенеренный ответ им соответствует и тд)
Однако, все эти подсчеты требуют знания правильных ответов (да еще и какого-то показательного набора вопросов) — даже для LLM as a Judge. Здесь и возникает вопрос а как именно пользователь будет искать, как формулировать вопрос, каких типов вопрос больше и можно ли их вообще типизировать и пр.
Вот с этим (нагенерить вопросно-ответные пары для офлайн-теста RAG-системы) giskard и помогает — достаточно сделать
а затем
Понятно, что как и в langchain, магии никакой нет, а хитроумные методы часто просто подобранные промпты.
Вот, например, скрипт для генерации SimpleQuestion .
Не смертельно большой же промпт?
Не чуя подвох 😆🫣 я запустил (gpt4o) на генерацию вопросов для тестового датасета.
И на 71 вопросе я получаю:
И отрицательный баланс на счете — 30 баксов как с куста.
На 70 вопросах!!! 😰😱😱😱😱🤯😵💫😡🤬🤬🤬
WTF ???
Конечно, когда есть железо, лучше разворачивать модели локально и не тратиться на API.
Но читая новость про контекст в 10М токенов я понимаю почему производителям LLM это может быть выгодно 🔪. Представьте что будет если вы стучитесь по API и платите за число токенов, а такая большая модель еще и в CoT уйдет 🫣. Выглядит происходящее сейчас с API сродни бесплатной раздаче наркотиков, но ценники в итоге будут бить любые фантазии.
Улыбаемся, машем, копим, ищем эффективные решения, радуемся что часть моделей-таки выкладывают в опенсорс и огромное коммьюнити работает над тем как их сжимать / дистиллировать / запускать на не совсем космолетах.
PS тарификация API по числу токенов примерно у всех
Ах да — авторов постов объединяет доступ к условно-бесплатным огромным корпоративным кластерам.
Нет-нет и попадаются на глаза посты про рост контекстного окна LLM.
И восторженные про 10М токенов и критический ответ про то что не все эти токены будут иметь одинаковую важность для модели и RAG все равно будет жив.Что объединяет авторов таких постов ? Сейчас покажу.
На днях надо было собрать RAG для демонстрации — просто обновить свой прошлогодний семинар. Но раз каждый день в тг поток новостей про новые перехаи ллмок — решил посмотреть как продвинулись методы их оценки.
Потыкавшись по репозиториям Ильи и Константина нашел библиотеку со странным названием giskard ровно для «evaluation of AI systems» как гласит этикетка.
Ну ок, парни используют, 4,5 тыс звездочек на github — что может пойти не так?
Здесь небольшая вставочка — коль скоро RAG про поиск релевантного чанка (кусочка информации) и генерацию ответа на основе него (а чанк добавляется в контекст LLM) — то и метрик можно придумать массу (отдельно на то насколько релевантные чанки достаются, насколько сгенеренный ответ им соответствует и тд)
Однако, все эти подсчеты требуют знания правильных ответов (да еще и какого-то показательного набора вопросов) — даже для LLM as a Judge. Здесь и возникает вопрос а как именно пользователь будет искать, как формулировать вопрос, каких типов вопрос больше и можно ли их вообще типизировать и пр.
Вот с этим (нагенерить вопросно-ответные пары для офлайн-теста RAG-системы) giskard и помогает — достаточно сделать
from giskard.rag.question_generators import complex_questions, double_questions, distracting_questions, situational_questions, simple_questionsа затем
knowledge_base = KnowledgeBase.from_pandas(df)
testset = generate_testset(
knowledge_base,
question_generators=[simple_questions, complex_questions, double_questions, distracting_questions, situational_questions],
num_questions=200,
language='ru',
agent_description=«….»
)Понятно, что как и в langchain, магии никакой нет, а хитроумные методы часто просто подобранные промпты.
Вот, например, скрипт для генерации SimpleQuestion .
Не смертельно большой же промпт?
Не чуя подвох 😆🫣 я запустил (gpt4o) на генерацию вопросов для тестового датасета.
И на 71 вопросе я получаю:
2025-04-08 01:28:44,092 pid:37078 MainThread giskard.rag.question_generators.situational_questions WARNING Encountered error in situational context generation: litellm.RateLimitError: RateLimitError: OpenAIException - Error code: 429 - {'error': {'message': 'You exceeded your current quota, please check your plan and billing details. For more information on this error, read the docs: https://platform.openai.com/docs/guides/error-codes/api-errors.', 'type': 'insufficient_quota', 'param': None, 'code': 'insufficient_quota'}}. Using default situational context instead.
И отрицательный баланс на счете — 30 баксов как с куста.
На 70 вопросах!!! 😰😱😱😱😱🤯😵💫😡🤬🤬🤬
WTF ???
Конечно, когда есть железо, лучше разворачивать модели локально и не тратиться на API.
Но читая новость про контекст в 10М токенов я понимаю почему производителям LLM это может быть выгодно 🔪. Представьте что будет если вы стучитесь по API и платите за число токенов, а такая большая модель еще и в CoT уйдет 🫣. Выглядит происходящее сейчас с API сродни бесплатной раздаче наркотиков, но ценники в итоге будут бить любые фантазии.
Улыбаемся, машем, копим, ищем эффективные решения, радуемся что часть моделей-таки выкладывают в опенсорс и огромное коммьюнити работает над тем как их сжимать / дистиллировать / запускать на не совсем космолетах.
PS тарификация API по числу токенов примерно у всех
1🔥18👍6❤3😁2🦄2💯1
Вчера на конференции Data Fusion мне задали вопрос из зала — почему так трудно попасть на стажировку в российские бигтех-компании?
И почему вакансий джунов в открытом доступе почти нет? 😡
Ответ не самый очевидный — потому что компании активно участвуют в образовании 🤓.
(Более того, наши законотворцы обсуждают новую инициативу — обязать все крупные ИТ-компании отправлять экспертов преподавать в ВУЗы под угрозой лишения ИТ-аккредитации)
Если речь про нашу компанию (а мы сейчас называемся MWS)
⁃ проводим ML-тренировки на ФКН ВШЭ
⁃ запустили ИИ-магистратуру на ФКН ВШЭ
⁃ вместе со Сбером и Яндексом вкладываемся в ВШПИ МФТИ, за нами MLный трек
⁃ третий год ведем ШАД MWS
И это только те проекты, где я деятельно участвовал (где-то запускал, где-то подхватывал -- здесь спасибо Вите Кантору и нашему Центру Образования -- прежде всего Кате Карцевой и Алине Веденской что втянули и максимально поддерживают меня).
Так откуда же нам брать стажеров как не с олимпиад и образовательных программ, в которых мы участвуем и уверены? А когда они подрастают до джунов -- при возможности их же и берем в штат.
Но даже такой хвастливый пост как этот может нести в себе пользу — присмотритесь к Школе Аналитиков Данных MWS. Если все-таки есть желание перекатиться в ML, например, из другой профессии, и иметь все шансы на стажировку в MWS уже к восьмому месяцу обучения.
Следующий набор осенью (обычно конец октября — начало ноября), учиться год — 2 занятия в неделю по три часа после работы, преподают наши ребята, делали с душой )
PS
Сама конференция оказалось с загадкой 😵💫
-- Прихожу в первый день на сессию с Ким и Набиуллиной — яблоку негде упасть, люди в проходах стоят. Думаю — ок, бизнесовая конфа.
-- Прихожу на сл день на сессию по RAG — снова все забито 😂
Первый раз вижу такое чтобы организаторы смогли сделать интересную конференцию и для технарей и для бизнесов, очень круто вышло 🏆🏆🏆
И почему вакансий джунов в открытом доступе почти нет? 😡
Ответ не самый очевидный — потому что компании активно участвуют в образовании 🤓.
(Более того, наши законотворцы обсуждают новую инициативу — обязать все крупные ИТ-компании отправлять экспертов преподавать в ВУЗы под угрозой лишения ИТ-аккредитации)
Если речь про нашу компанию (а мы сейчас называемся MWS)
Все ключевые активы в области информационных технологий: МТС Digital, МТС Cloud, Big Data МТС, MTS AI, Visionlabs – объединены в единую технологическую компанию МТС Web Services (MWS)то мы:
⁃ проводим ML-тренировки на ФКН ВШЭ
⁃ запустили ИИ-магистратуру на ФКН ВШЭ
⁃ вместе со Сбером и Яндексом вкладываемся в ВШПИ МФТИ, за нами MLный трек
⁃ третий год ведем ШАД MWS
И это только те проекты, где я деятельно участвовал (где-то запускал, где-то подхватывал -- здесь спасибо Вите Кантору и нашему Центру Образования -- прежде всего Кате Карцевой и Алине Веденской что втянули и максимально поддерживают меня).
Так откуда же нам брать стажеров как не с олимпиад и образовательных программ, в которых мы участвуем и уверены? А когда они подрастают до джунов -- при возможности их же и берем в штат.
Но даже такой хвастливый пост как этот может нести в себе пользу — присмотритесь к Школе Аналитиков Данных MWS. Если все-таки есть желание перекатиться в ML, например, из другой профессии, и иметь все шансы на стажировку в MWS уже к восьмому месяцу обучения.
Следующий набор осенью (обычно конец октября — начало ноября), учиться год — 2 занятия в неделю по три часа после работы, преподают наши ребята, делали с душой )
PS
Сама конференция оказалось с загадкой 😵💫
-- Прихожу в первый день на сессию с Ким и Набиуллиной — яблоку негде упасть, люди в проходах стоят. Думаю — ок, бизнесовая конфа.
-- Прихожу на сл день на сессию по RAG — снова все забито 😂
Первый раз вижу такое чтобы организаторы смогли сделать интересную конференцию и для технарей и для бизнесов, очень круто вышло 🏆🏆🏆
❤34🔥12❤🔥2
#ML
Сегодня рассказывал студентам что feature engineering еще актуален -- в том числе, для моделей в высоконагруженных сервисах, например, DSP-платформах в рекламе. Потому как расчет фичей можно реализовать на Go и останется только применить бинарник модели к уже насчитанным фичам.
И тут я говорю фразу -- ну нет же на Go реализации сложных сеток (хотя пару лет назад я вынашивал мысль сделать сделать такую ML-библиотеку). С этими словами я полез гуглить и оказалось что я слоупок -- уже 2 месяца как в гите есть реализация трансформеров на Golang.
Невероятно как быстро устаревают знания об области в которой годами работаешь 😱
Сегодня рассказывал студентам что feature engineering еще актуален -- в том числе, для моделей в высоконагруженных сервисах, например, DSP-платформах в рекламе. Потому как расчет фичей можно реализовать на Go и останется только применить бинарник модели к уже насчитанным фичам.
И тут я говорю фразу -- ну нет же на Go реализации сложных сеток (хотя пару лет назад я вынашивал мысль сделать сделать такую ML-библиотеку). С этими словами я полез гуглить и оказалось что я слоупок -- уже 2 месяца как в гите есть реализация трансформеров на Golang.
Невероятно как быстро устаревают знания об области в которой годами работаешь 😱
👍20🤔5🤯5🔥3🦄3💯1
#корпжиза
«LLM уравняли всех — и джунов и тимлидов» — сказал один мой приятель.
Если верить цитатам в интернете, то еще «God made men, but Samuel Colt made them equal»
Сначала вообще про «уравнивание», а потом и до LLM дойдем.
Многие слышали про проект «осознанная меркантильность», про советы про накрутку опыта, про работу одновременно на 2-3 работах и прочее.
Многие менеджеры аргументируют в духе «а если все так начнут делать кто работать будет?».
Так вот, мне, как менеджеру, ребята с 2-3 работами более чем нравятся:
◦ Насмотренность и число технологий, с которыми они знакомы, у них всяко выше чем у сотрудника с 10+ лет на одном месте
◦ Знаний и навыков тоже — они постоянно проходят — ловят тренд на актуальные запросы рынка, оперативно учат то, чего не хватает
◦ Коммуникативно они тоже как правило сильные
◦ Работать с ними можно как с подрядчиком — на вход описанная задача, на выход — результат
◦ Расставаться в случае косяков с таким сотрудников не жалко и не сложно (у него еще 2 работы есть)
А теперь вернемся в начало — что рынку могут предложить тим. лиды, которые по 5 лет делают одно и то же? Блевотное «ставил задачи и контролировал их выполнение» из резюмех? Лояльность компании ?
Знание, какой цвет в презентации у шефа любимый (и то, если кукбуки позволяют)?
Если вы тимлид — остановитесь и задумайтесь, какие востребованные рынком навыки и знания (а не карьерный трек и опыт в годах) вас сейчас дифференцируют от мидла или синьора?
Умение декомпозировать задачи и планировать проект? Но каждый кто хоть раз сам ездил в отпуск и успешно из него вернулся — готовый руководитель проекта (точно так же оценивал риски, планировал бюджет, справлялся с нежданчиками, находил trade-off со стейкхолдерами)
Будет здорово, если поделитесь в комментариях (а если пост хотя бы 50 лайков наберет — напишу свою версию про себя).
Если вы из бизнеса — чего, кроме навыков, вы хотите от соискателя? Почему не подойдет соискатель без опыта, но с навыками и знаниями?
Так что мб и не LLM всех уравнял, а рынок, которые очень быстро развивается и меняет фокусы? Хотя с момента появления статьи про внимание 8 лет почти прошло — кто мешал заботать?
В штатах малый бизнес массово переключается на API к LLM и не нанимает экспертов со степенью чтобы полгода разрабатывать модель для узкой задачи.
Прототипы тоже собираются за вечер.
Есть и обратная сторона — шапкозакидательные поверхностные ребята, которые впаривают бизнесу работающие прототипы, а те потом топают ножкой со словами «да чего тут делать» и не понимают чем пром. решение отличается от прототипа.
Небольшой лайфхак, спросите ребят, которые лихо прикручивают прототип на базе API какой-н LLM:
◦ Насколько guardrails уменьшит latency? Хотя бы на 20% будет?
◦ На сколько % SFT снижает галлюцинации по сравнению с QLORA?
◦ В чем преимущества Groundedness над Faithfullness?
Все они, конечно же, провокационные и подталкивающие к ошибке, но срезать верхогляда — бесценно.
PS. Буду рад узнать вашу версию кого стоит нанять — джуна или тимлида (предполагается одинаковый функционал) при равенстве навыков, релевантных бизнесу в моменте (LLM например).
я в отпуске, пообщаться в комментах — велком!
«LLM уравняли всех — и джунов и тимлидов» — сказал один мой приятель.
Если верить цитатам в интернете, то еще «God made men, but Samuel Colt made them equal»
Сначала вообще про «уравнивание», а потом и до LLM дойдем.
Многие слышали про проект «осознанная меркантильность», про советы про накрутку опыта, про работу одновременно на 2-3 работах и прочее.
Многие менеджеры аргументируют в духе «а если все так начнут делать кто работать будет?».
Так вот, мне, как менеджеру, ребята с 2-3 работами более чем нравятся:
◦ Насмотренность и число технологий, с которыми они знакомы, у них всяко выше чем у сотрудника с 10+ лет на одном месте
◦ Знаний и навыков тоже — они постоянно проходят — ловят тренд на актуальные запросы рынка, оперативно учат то, чего не хватает
◦ Коммуникативно они тоже как правило сильные
◦ Работать с ними можно как с подрядчиком — на вход описанная задача, на выход — результат
◦ Расставаться в случае косяков с таким сотрудников не жалко и не сложно (у него еще 2 работы есть)
А теперь вернемся в начало — что рынку могут предложить тим. лиды, которые по 5 лет делают одно и то же? Блевотное «ставил задачи и контролировал их выполнение» из резюмех? Лояльность компании ?
Знание, какой цвет в презентации у шефа любимый (и то, если кукбуки позволяют)?
Если вы тимлид — остановитесь и задумайтесь, какие востребованные рынком навыки и знания (а не карьерный трек и опыт в годах) вас сейчас дифференцируют от мидла или синьора?
Умение декомпозировать задачи и планировать проект? Но каждый кто хоть раз сам ездил в отпуск и успешно из него вернулся — готовый руководитель проекта (точно так же оценивал риски, планировал бюджет, справлялся с нежданчиками, находил trade-off со стейкхолдерами)
Будет здорово, если поделитесь в комментариях (а если пост хотя бы 50 лайков наберет — напишу свою версию про себя).
Если вы из бизнеса — чего, кроме навыков, вы хотите от соискателя? Почему не подойдет соискатель без опыта, но с навыками и знаниями?
Так что мб и не LLM всех уравнял, а рынок, которые очень быстро развивается и меняет фокусы? Хотя с момента появления статьи про внимание 8 лет почти прошло — кто мешал заботать?
В штатах малый бизнес массово переключается на API к LLM и не нанимает экспертов со степенью чтобы полгода разрабатывать модель для узкой задачи.
Прототипы тоже собираются за вечер.
Есть и обратная сторона — шапкозакидательные поверхностные ребята, которые впаривают бизнесу работающие прототипы, а те потом топают ножкой со словами «да чего тут делать» и не понимают чем пром. решение отличается от прототипа.
Небольшой лайфхак, спросите ребят, которые лихо прикручивают прототип на базе API какой-н LLM:
◦ Насколько guardrails уменьшит latency? Хотя бы на 20% будет?
◦ На сколько % SFT снижает галлюцинации по сравнению с QLORA?
◦ В чем преимущества Groundedness над Faithfullness?
PS. Буду рад узнать вашу версию кого стоит нанять — джуна или тимлида (предполагается одинаковый функционал) при равенстве навыков, релевантных бизнесу в моменте (LLM например).
я в отпуске, пообщаться в комментах — велком!
1❤76👍19🔥10🥱2👎1😁1🫡1🦄1
#корпжиза
вдогонку к прошлому посту -- как я вижу деление на грейды (на примере модели оттока):
Junior — строит модель оттока и замеряет roc_auc
Middle — убеждается что отток по месяцам стабилен, замеряет lift, калибрует на вероятности
Senior — Don’t Predict the Churn , prevent it! — строит модель, которая предлагает какую-то опцию (скидку например) только тем, кто а) хочет уйти б) на опцию среагирует и в) финансовый итог такой операции будет положительным — а-ля аплифт моделирование
Team leader — отправляет аналитика и DS разбирать обратную связь по продукту, находит причины оттока, на пальцах прикидывает сколько денег можно сэкономить если эти причины устранить — идет бодаться с продактом чтобы это сделать
CDS — все массовые задачи платформизировал, а по остальным погружен во все 4 уровня (заодно и ревью устроить может)
а следующим попробую погадать что рынку могут предложить CDSы
вдогонку к прошлому посту -- как я вижу деление на грейды (на примере модели оттока):
Junior — строит модель оттока и замеряет roc_auc
Middle — убеждается что отток по месяцам стабилен, замеряет lift, калибрует на вероятности
Senior — Don’t Predict the Churn , prevent it! — строит модель, которая предлагает какую-то опцию (скидку например) только тем, кто а) хочет уйти б) на опцию среагирует и в) финансовый итог такой операции будет положительным — а-ля аплифт моделирование
Team leader — отправляет аналитика и DS разбирать обратную связь по продукту, находит причины оттока, на пальцах прикидывает сколько денег можно сэкономить если эти причины устранить — идет бодаться с продактом чтобы это сделать
CDS — все массовые задачи платформизировал, а по остальным погружен во все 4 уровня (заодно и ревью устроить может)
а следующим попробую погадать что рынку могут предложить CDSы
🔥25🦄3❤2😁2👌1👾1
Еще в копилку тревожности синьоров и манагеров -- Revenge of the junior developer
Классческий естественный отбор -- выживает самый адаптивный
Sourcegraph
Revenge of the junior developer | Sourcegraph Blog
The latest installment from Steve Yegge on viiiiibe coding and what that means for developer jobs.
👍9😁3🤨3
#кейсы #корпжиза
Обещанное имхо про то, что же дифференцирует мидлов / синьоров / лидов и далее до CEO.
По традиции с кейса, но раз уж отпуск вчера закончился — вот вам отпускная история.
Однажды в отпуске (не в этот раз, но в этом же месте) соблазнились мы с семьей экскурсией - поплавать с огромными морскими дьяволами (они же манты, но не те что в хинкальной). Взяли катер, капитана, капитан свою подружку, и поплыли.
Манты они не то чтобы деревья — они не растут в одном месте, они плавают по океану, так что мы доверились капитану, не вникая в географию, и минут 40 плыли от нашего острова, как потом выяснилось, примерно сюда.
Не обнаружив на мелководье дьяволов, пошли в сторону открытого моря, заметили мантов, здесь кэп с подругой и мной высадились в новом месте и поплыли догонять. Предусмотрительно (хе-хе) не взяв ласты и трубку (хорошо хоть очки были), я сильно отстал. Погода начала портиться, и кэп недолго думая свернул удочки, залез с подругой на катер и испарился в одном из равнозначных (посреди моря-то) направлений. Единственная оказия — я-то так и остался в воде 😂🙈. Пошел дождик, ветер поднимает полуметровые волны (а мб и больше — кто их измерял), они накрывают с головой, дальше пары метров вокруг не видно ничего кроме воды, а я стремительно понимаю что не зря возраст Христа считают опасным.
Как вы знаете, фамилия моя не Фелпс, да даже если бы и так — плыть-то в какую сторону? Да и плыть против волн такое — только устанешь быстрее и все, а здесь и на плаву держаться уже не просто.
Через какое-то время тучи сдуло, дождик прошел, море стало поспокойнее, начало проглядывать солнце.
А еще оказалось что туристы с соседнего острова Расду тоже соблазнились плаваньем с мантами и их катер остановился достаточно близко чтобы я к нему доплыл пока они выгружались (человек 10) и ныряли. Характерна реакция их капитана — он нисколько не удивился моему появлению (видимо, белые для них на одно лицо).
Мораль история простая — какие бы у тебя не были харды, и в жизни и в корпорации ты зависишь от других людей, причем жизненно зависишь, и не всегда это очевидно. И, как минимум, чтобы харды применить — надо знать куда плыть.
И дифференциатором грейдов выступают в первую очередь твои социальные навыки и социальный капитал — ни разу не видел чтобы CEO нанимали по объявлению (разве что зиц-председателя Фунта).
Нередко вижу ситуацию когда лидом в компании работает не крутой DS, а тот кто там работает давно.На первый взгляд кажется что это не очень меритократично. Однако, если речь о запуске новой инициативы и выделения ресурсов под нее — у кого будет кредит доверия? Разве у варяга? Разве что у варяга с репутацией и нетворком — и то не факт что оставят без присмотра кого-то «своего», пусть это и не будет формализовано.
Это не значит что не надо растить свою компетенцию — но стоит рассматривать свою экспертность и ее развитие в тч как инструмент социальный. Нужно осваивать навыки речи -- письменной, устной, невербальной. Уметь делать так, чтобы тебя понимали и не понимали когда ты этого хочешь. Но это все -- все еще имхо 😄
Обещанное имхо про то, что же дифференцирует мидлов / синьоров / лидов и далее до CEO.
По традиции с кейса, но раз уж отпуск вчера закончился — вот вам отпускная история.
Однажды в отпуске (не в этот раз, но в этом же месте) соблазнились мы с семьей экскурсией - поплавать с огромными морскими дьяволами (они же манты, но не те что в хинкальной). Взяли катер, капитана, капитан свою подружку, и поплыли.
Манты они не то чтобы деревья — они не растут в одном месте, они плавают по океану, так что мы доверились капитану, не вникая в географию, и минут 40 плыли от нашего острова, как потом выяснилось, примерно сюда.
Не обнаружив на мелководье дьяволов, пошли в сторону открытого моря, заметили мантов, здесь кэп с подругой и мной высадились в новом месте и поплыли догонять. Предусмотрительно (хе-хе) не взяв ласты и трубку (хорошо хоть очки были), я сильно отстал. Погода начала портиться, и кэп недолго думая свернул удочки, залез с подругой на катер и испарился в одном из равнозначных (посреди моря-то) направлений. Единственная оказия — я-то так и остался в воде 😂🙈. Пошел дождик, ветер поднимает полуметровые волны (а мб и больше — кто их измерял), они накрывают с головой, дальше пары метров вокруг не видно ничего кроме воды, а я стремительно понимаю что не зря возраст Христа считают опасным.
Как вы знаете, фамилия моя не Фелпс, да даже если бы и так — плыть-то в какую сторону? Да и плыть против волн такое — только устанешь быстрее и все, а здесь и на плаву держаться уже не просто.
Через какое-то время тучи сдуло, дождик прошел, море стало поспокойнее, начало проглядывать солнце.
А еще оказалось что туристы с соседнего острова Расду тоже соблазнились плаваньем с мантами и их катер остановился достаточно близко чтобы я к нему доплыл пока они выгружались (человек 10) и ныряли. Характерна реакция их капитана — он нисколько не удивился моему появлению (видимо, белые для них на одно лицо).
Мораль история простая — какие бы у тебя не были харды, и в жизни и в корпорации ты зависишь от других людей, причем жизненно зависишь, и не всегда это очевидно. И, как минимум, чтобы харды применить — надо знать куда плыть.
И дифференциатором грейдов выступают в первую очередь твои социальные навыки и социальный капитал — ни разу не видел чтобы CEO нанимали по объявлению (разве что зиц-председателя Фунта).
Нередко вижу ситуацию когда лидом в компании работает не крутой DS, а тот кто там работает давно.На первый взгляд кажется что это не очень меритократично. Однако, если речь о запуске новой инициативы и выделения ресурсов под нее — у кого будет кредит доверия? Разве у варяга? Разве что у варяга с репутацией и нетворком — и то не факт что оставят без присмотра кого-то «своего», пусть это и не будет формализовано.
Это не значит что не надо растить свою компетенцию — но стоит рассматривать свою экспертность и ее развитие в тч как инструмент социальный. Нужно осваивать навыки речи -- письменной, устной, невербальной. Уметь делать так, чтобы тебя понимали и не понимали когда ты этого хочешь. Но это все -- все еще имхо 😄
2🔥40👍12😁9😨7❤2🤔1