Data Analyst Interview Resources
52.2K subscribers
263 photos
1 video
53 files
330 links
Join our telegram channel to learn how data analysis can reveal fascinating patterns, trends, and stories hidden within the numbers! ๐Ÿ“Š

For ads & suggestions: @love_data
Download Telegram
๐Ÿ“Š Day 6 โ€“ Data Analyst Most Asked Interview Question โ“

UNION vs UNION ALL (SQL)

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

UNION

โ€ข Combines result sets
โ€ข Removes duplicate rows
โ€ข Slightly slower due to deduplication
โ€ข Columns count & data types must match

UNION ALL

โ€ข Combines result sets
โ€ข Keeps duplicates
โ€ข Faster than UNION
โ€ข Columns count & data types must match

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

Rule:

๐Ÿ‘‰ Duplicates should be removed โ†’ UNION
๐Ÿ‘‰ Performance matters & duplicates allowed โ†’ UNION ALL โœ…

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

โค๏ธ React โค๏ธ if you want interview prep Day 7 Tomorrow ๐Ÿ”ฅ
โค2
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—ข๐—ป ๐—Ÿ๐—ฎ๐˜๐—ฒ๐˜€๐˜ ๐—ง๐—ฒ๐—ฐ๐—ต๐—ป๐—ผ๐—น๐—ผ๐—ด๐—ถ๐—ฒ๐˜€๐Ÿ˜

- Data Science 
- AI/ML
- Data Analytics
- UI/UX
- Full-stack Development 

Get Job-Ready Guidance in Your Tech Journey

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/4sw5Ev8

Date :- 11th January 2026
โœ… SQL Interview Challenge ๐Ÿ’ผ๐Ÿง 

๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐—ฒ๐—ฟ: How would you count how many employees are in each department?

๐— ๐—ฒ: Iโ€™d use the GROUP BY clause with COUNT(*) to aggregate employee counts per department.

๐Ÿ”น Query:
SELECT department, COUNT(*) AS employee_count  
FROM employees
GROUP BY department;


โœ” Why it works:
โ€“ GROUP BY groups rows by department
โ€“ COUNT(*) counts employees in each group
โ€“ Clean, scalable, and works with large datasets

๐Ÿ”Ž Bonus Insight:
To filter only departments with more than 5 employees:
SELECT department, COUNT(*) AS employee_count  
FROM employees
GROUP BY department
HAVING COUNT(*) > 5;

โ€“ HAVING filters aggregated results
โ€“ Useful in dashboards, reports, and business logic

๐Ÿ’ฌ Tap โค๏ธ for more SQL interview tips!
โค6
๐—›๐—ถ๐—ด๐—ต ๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ช๐—ถ๐˜๐—ต ๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—”๐˜€๐˜€๐—ถ๐˜€๐˜๐—ฎ๐—ป๐—ฐ๐—ฒ๐Ÿ˜

Learn from IIT faculty and industry experts.

IIT Roorkee DS & AI Program :- https://pdlink.in/4qHVFkI

IIT Patna AI & ML :- https://pdlink.in/4pBNxkV

IIM Mumbai DM & Analytics :- https://pdlink.in/4jvuHdE

IIM Rohtak Product Management:- https://pdlink.in/4aMtk8i

IIT Roorkee Agentic Systems:- https://pdlink.in/4aTKgdc

Upskill in todayโ€™s most in-demand tech domains and boost your career ๐Ÿš€
โœ… Data Analyst Interview Questions for Freshers ๐Ÿ“Š

1) What is the role of a data analyst?
Answer: A data analyst collects, processes, and performs statistical analyses on data to provide actionable insights that support business decision-making.

2) What are the key skills required for a data analyst?
Answer: Strong skills in SQL, Excel, data visualization tools (like Tableau or Power BI), statistical analysis, and problem-solving abilities are essential.

3) What is data cleaning?
Answer: Data cleaning involves identifying and correcting inaccuracies, inconsistencies, or missing values in datasets to improve data quality.

4) What is the difference between structured and unstructured data?
Answer: Structured data is organized in rows and columns (e.g., spreadsheets), while unstructured data includes formats like text, images, and videos that lack a predefined structure.

5) What is a KPI?
Answer: KPI stands for Key Performance Indicator, which is a measurable value that demonstrates how effectively a company is achieving its business goals.

6) What tools do you use for data analysis?
Answer: Common tools include Excel, SQL, Python (with libraries like Pandas), R, Tableau, and Power BI.

7) Why is data visualization important?
Answer: Data visualization helps translate complex data into understandable charts and graphs, making it easier for stakeholders to grasp insights and trends.

8) What is a pivot table?
Answer: A pivot table is a feature in Excel that allows you to summarize, analyze, and explore data by reorganizing and grouping it dynamically.

9) What is correlation?
Answer: Correlation measures the statistical relationship between two variables, indicating whether they move together and how strongly.

10) What is a data warehouse?
Answer: A data warehouse is a centralized repository that consolidates data from multiple sources, optimized for querying and analysis.

11) Explain the difference between INNER JOIN and OUTER JOIN in SQL.
Answer: INNER JOIN returns only the matching rows between two tables, while OUTER JOIN returns all matching rows plus unmatched rows from one or both tables, depending on whether itโ€™s LEFT, RIGHT, or FULL OUTER JOIN.

12) What is hypothesis testing?
Answer: Hypothesis testing is a statistical method used to determine if there is enough evidence in a sample to infer that a certain condition holds true for the entire population.

13) What is the difference between mean, median, and mode?
Answer:
โฆ Mean: The average of all numbers.
โฆ Median: The middle value when data is sorted.
โฆ Mode: The most frequently occurring value in a dataset.

14) What is data normalization?
Answer: Normalization is the process of organizing data to reduce redundancy and improve integrity, often by dividing data into related tables.

15) How do you handle missing data?
Answer: Missing data can be handled by removing rows, imputing values (mean, median, mode), or using algorithms that support missing data.

๐Ÿ’ฌ React โค๏ธ for more!
โค5
๐Ÿ“Š Day 7 โ€“ Data Analyst Most Asked Interview Question โ“

DELETE vs TRUNCATE vs DROP (SQL)

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

DELETE

โ€ข Removes specific rows using WHERE
โ€ข Can be rolled back (transactional)
โ€ข Table structure remains
โ€ข Slower for large data

TRUNCATE

โ€ข Removes all rows at once
โ€ข Cannot be rolled back
โ€ข Table structure remains
โ€ข Faster than DELETE

DROP

โ€ข Removes entire table
โ€ข Deletes data + structure
โ€ข Cannot be rolled back
โ€ข Frees storage completely

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

Rule:

๐Ÿ‘‰ Remove specific data โ†’ DELETE
๐Ÿ‘‰ Clear entire table fast โ†’ TRUNCATE
๐Ÿ‘‰ Remove table completely โ†’ DROP โœ…

โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”

โค๏ธ React โค๏ธ if you want interview prep Day 8 Tomorrow ๐Ÿ”ฅ
โค7
๐Ÿ“Š ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐Ÿ˜

๐Ÿš€Upgrade your skills with industry-relevant Data Analytics training at ZERO cost 

โœ… Beginner-friendly
โœ… Certificate on completion
โœ… High-demand skill in 2026

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/497MMLw

๐Ÿ“Œ 100% FREE โ€“ Limited seats available!
โœ… If you're serious about learning Data Analytics โ€” follow this roadmap ๐Ÿ“Š๐Ÿง 

1. Learn Excel basics โ€“ formulas, pivot tables, charts
2. Master SQL โ€“ SELECT, JOIN, GROUP BY, CTEs, window functions
3. Get good at Python โ€“ especially Pandas, NumPy, Matplotlib, Seaborn
4. Understand statistics โ€“ mean, median, standard deviation, correlation, hypothesis testing
5. Clean and wrangle data โ€“ handle missing values, outliers, normalization, encoding
6. Practice Exploratory Data Analysis (EDA) โ€“ univariate, bivariate analysis
7. Work on real datasets โ€“ sales, customer, finance, healthcare, etc.
8. Use Power BI or Tableau โ€“ create dashboards and data stories
9. Learn business metrics KPIs โ€“ retention rate, CLV, ROI, conversion rate
10. Build mini-projects โ€“ sales dashboard, HR analytics, customer segmentation
11. Understand A/B Testing โ€“ setup, analysis, significance
12. Practice SQL + Python combo โ€“ extract, clean, visualize, analyze
13. Learn about data pipelines โ€“ basic ETL concepts, Airflow, dbt
14. Use version control โ€“ Git GitHub for all projects
15. Document your analysis โ€“ use Jupyter or Notion to explain insights
16. Practice storytelling with data โ€“ explain โ€œso what?โ€ clearly
17. Know how to answer business questions using data
18. Explore cloud tools (optional) โ€“ BigQuery, AWS S3, Redshift
19. Solve case studies โ€“ product analysis, churn, marketing impact
20. Apply for internships/freelance โ€“ gain experience + build resume
21. Post your projects on GitHub or portfolio site
22. Prepare for interviews โ€“ SQL, Python, scenario-based questions
23. Keep learning โ€“ YouTube, courses, Kaggle, LinkedIn Learning

๐Ÿ’ก Tip: Focus on building 3โ€“5 strong projects and learn to explain them in interviews.

๐Ÿ’ฌ Tap โค๏ธ for more!
โค4
๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—”๐˜€๐˜€๐—ถ๐˜€๐˜๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ ๐—ถ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฏ๐˜† ๐—œ๐—œ๐—ง ๐—ฅ๐—ผ๐—ผ๐—ฟ๐—ธ๐—ฒ๐—ฒ๐Ÿ˜

Deadline: 18th January 2026

Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors

Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ถ๐—ป๐—ธ๐Ÿ‘‡

https://pdlink.in/4qHVFkI

Only Limited Seats Available!
How to start your career in data analysis for freshers ๐Ÿ˜„๐Ÿ‘‡

1. Learn the Basics: Begin with understanding the fundamental concepts of statistics, mathematics, and programming languages like Python or R.

Free Resources: https://t.me/pythonanalyst/103

2. Acquire Technical Skills: Develop proficiency in data analysis tools such as Excel, SQL, and data visualization tools like Tableau or Power BI.

Free Data Analysis Books: https://t.me/learndataanalysis

3. Gain Knowledge in Statistics: A solid foundation in statistical concepts is crucial for data analysis. Learn about probability, hypothesis testing, and regression analysis.
Free course by Khan Academy will help you to enhance these skills.

4. Programming Proficiency: Enhance your programming skills, especially in languages commonly used in data analysis like Python or R. Familiarity with libraries such as Pandas and NumPy in Python is beneficial. Kaggle has amazing content to learn these skills.

5. Data Cleaning and Preprocessing: Understand the importance of cleaning and preprocessing data. Learn techniques to handle missing values, outliers, and transform data for analysis.

6. Database Knowledge: Acquire knowledge about databases and SQL for efficient data retrieval and manipulation.
SQL for data analytics: https://t.me/sqlanalyst

7. Data Visualization: Master the art of presenting insights through visualizations. Learn tools like Matplotlib, Seaborn, or ggplot2 for creating meaningful charts and graphs. If you are from non-technical background, learn Tableau or Power BI.
FREE Resources to learn data visualization: https://t.me/PowerBI_analyst

8. Machine Learning Basics: Familiarize yourself with basic machine learning concepts. This knowledge can be beneficial for advanced analytics tasks.
ML Basics: https://t.me/datasciencefun/1476

9. Build a Portfolio: Work on projects that showcase your skills. This could be personal projects, contributions to open-source projects, or challenges from platforms like Kaggle.
Data Analytics Portfolio Projects: https://t.me/DataPortfolio

10. Networking and Continuous Learning: Engage with the data science community, attend meetups, webinars, and conferences. Build your strong Linkedin profile and enhance your network.

11. Apply for Internships or Entry-Level Positions: Gain practical experience by applying for internships or entry-level positions in data analysis. Real-world projects contribute significantly to your learning.
Data Analyst Jobs & Internship opportunities: https://t.me/jobs_SQL

12. Effective Communication: Develop strong communication skills. Being able to convey your findings and insights in a clear and understandable manner is crucial.

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
โค1
๐๐š๐ฒ ๐€๐Ÿ๐ญ๐ž๐ซ ๐๐ฅ๐š๐œ๐ž๐ฆ๐ž๐ง๐ญ - ๐†๐ž๐ญ ๐๐ฅ๐š๐œ๐ž๐ ๐ˆ๐ง ๐“๐จ๐ฉ ๐Œ๐๐‚'๐ฌ ๐Ÿ˜

Learn Coding From Scratch - Lectures Taught By IIT Alumni

60+ Hiring Drives Every Month

๐‡๐ข๐ ๐ก๐ฅ๐ข๐ ๐ก๐ญ๐ฌ:- 

๐ŸŒŸ Trusted by 7500+ Students
๐Ÿค 500+ Hiring Partners
๐Ÿ’ผ Avg. Rs. 7.4 LPA
๐Ÿš€ 41 LPA Highest Package

Eligibility: BTech / BCA / BSc / MCA / MSc

๐‘๐ž๐ ๐ข๐ฌ๐ญ๐ž๐ซ ๐๐จ๐ฐ๐Ÿ‘‡ :- 

https://pdlink.in/4hO7rWY

Hurry, limited seats available!
โœ… How to Grow Fast as a Data Analyst ๐Ÿ“ˆ๐Ÿ’ผ

1๏ธโƒฃ Master Core Tools
- Excel: Pivot tables, VLOOKUP/XLOOKUP, Power Query
- SQL: Joins, aggregations, CTEs, and window functions
- Power BI / Tableau: Building interactive dashboards and data modeling
- Python: Using Pandas, Matplotlib, and Seaborn for automation and EDA

2๏ธโƒฃ Learn Key Concepts
- Statistics: Mean, median, standard deviation, and distributions
- Data Cleaning: Handling missing values, duplicates, and outliers
- Data Storytelling: Choosing the right chart and explaining insights clearly
- Business Domain: Understanding KPIs like Churn Rate, ROI, and Conversion

3๏ธโƒฃ Build Practical Projects
- Sales Analysis: Use Power BI to track revenue trends
- Customer Segmentation: Use SQL to group users by behavior
- Web Scraping/API: Use Python to collect and analyze real-world data
- Financial Reporting: Use Excel for automated budget tracking

4๏ธโƒฃ Share Your Work
- LinkedIn: Post screenshots of your dashboards and write about your findings
- GitHub: Organize your SQL scripts and Python notebooks in clean repositories
- Portfolio: Create a simple website or a PDF to showcase your top 3 projects

5๏ธโƒฃ Join the Community
- Follow experts on LinkedIn and Twitter
- Participate in #60DaysOfData or #MakeoverMonday challenges
- Engage in discussions on Reddit (r/dataanalysis) or Kaggle

6๏ธโƒฃ Stay Current
- Follow industry leaders like Microsoft, Google, and Salesforce
- Subscribe to newsletters: Data Elixir, TLDR, or Analytics Vidhya
- Learn cloud-based analysis with Google BigQuery or Snowflake

๐ŸŽฏ Practice daily. Improve weekly. Share monthly.

๐Ÿ’ฌ Tap โค๏ธ if this helped you!
โค2