Step-by-step guide to become a Data Analyst in 2025โ๐
1. Learn the Fundamentals:
Start with Excel, basic statistics, and data visualization concepts.
2. Pick Up Key Tools & Languages:
Master SQL, Python (or R), and data visualization tools like Tableau or Power BI.
3. Get Formal Education or Certification:
A bachelorโs degree in a relevant field (like Computer Science, Math, or Economics) helps, but you can also do online courses or certifications in data analytics.
4. Build Hands-on Experience:
Work on real-world projectsโuse Kaggle datasets, internships, or freelance gigs to practice data cleaning, analysis, and visualization.
5. Create a Portfolio:
Showcase your projects on GitHub or a personal website. Include dashboards, reports, and code samples.
6. Develop Soft Skills:
Focus on communication, problem-solving, teamwork, and attention to detailโthese are just as important as technical skills.
7. Apply for Entry-Level Jobs:
Look for roles like โJunior Data Analystโ or โBusiness Analyst.โ Tailor your resume to highlight your skills and portfolio.
8. Keep Learning:
Stay updated with new tools (like AI-driven analytics), trends, and advanced topics such as machine learning or domain-specific analytics.
React โค๏ธ for more
1. Learn the Fundamentals:
Start with Excel, basic statistics, and data visualization concepts.
2. Pick Up Key Tools & Languages:
Master SQL, Python (or R), and data visualization tools like Tableau or Power BI.
3. Get Formal Education or Certification:
A bachelorโs degree in a relevant field (like Computer Science, Math, or Economics) helps, but you can also do online courses or certifications in data analytics.
4. Build Hands-on Experience:
Work on real-world projectsโuse Kaggle datasets, internships, or freelance gigs to practice data cleaning, analysis, and visualization.
5. Create a Portfolio:
Showcase your projects on GitHub or a personal website. Include dashboards, reports, and code samples.
6. Develop Soft Skills:
Focus on communication, problem-solving, teamwork, and attention to detailโthese are just as important as technical skills.
7. Apply for Entry-Level Jobs:
Look for roles like โJunior Data Analystโ or โBusiness Analyst.โ Tailor your resume to highlight your skills and portfolio.
8. Keep Learning:
Stay updated with new tools (like AI-driven analytics), trends, and advanced topics such as machine learning or domain-specific analytics.
React โค๏ธ for more
โค1
35 Important SQL Interview Questions with Detailed Answers:
1. Explain order of execution of SQL.
Order: FROM โ JOIN โ ON โ WHERE โ GROUP BY โ HAVING โ SELECT โ DISTINCT โ ORDER BY โ LIMIT. SQL queries are processed in this logical sequence, not the way they are written.
2. What is difference between WHERE and HAVING?
WHERE filters rows before aggregation, while HAVING filters groups after aggregation.
3. What is the use of GROUP BY?
GROUP BY aggregates data across rows with the same values in specified columns, commonly used with aggregate functions.
4. Explain all types of joins in SQL?
INNER JOIN: Returns matching rows from both tables.
LEFT JOIN: All rows from the left, matched rows from right.
RIGHT JOIN: All rows from the right, matched rows from left.
FULL JOIN: All rows from both, with NULLs where no match.
SELF JOIN: Joins table to itself.
CROSS JOIN: Cartesian product of both tables.
5. What are triggers in SQL?
Triggers are procedural code executed automatically in response to certain events on a table or view (INSERT, UPDATE, DELETE).
6. What is stored procedure in SQL?
A stored procedure is a set of SQL statements saved and executed on demand, useful for modularizing code.
7. Explain all types of window functions?
RANK(): Gives rank with gaps.
DENSE_RANK(): Ranks without gaps.
ROW_NUMBER(): Unique row index.
LEAD(): Access next row.
LAG(): Access previous row.
8. What is difference between DELETE and TRUNCATE?
DELETE: Row-wise deletion, can have WHERE clause, logs each row.
TRUNCATE: Deletes all rows, faster, minimal logging, cannot rollback easily.
9. What is difference between DML, DDL and DCL?
DML: Data Manipulation Language (SELECT, INSERT, UPDATE, DELETE).
DDL: Data Definition Language (CREATE, ALTER, DROP).
DCL: Data Control Language (GRANT, REVOKE).
10. What are aggregate functions?
Functions that return a single value: SUM(), AVG(), COUNT(), MIN(), MAX().
11. Which is faster: CTE or Subquery?
Performance depends on context, but subqueries are sometimes faster as CTEs may be materialized.
12. What are constraints and types?
Rules to maintain data integrity. Types: NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, CHECK, DEFAULT.
13. Types of Keys?
Primary Key
Foreign Key
Unique Key
Composite Key
Candidate Key
14. Different types of Operators?
Arithmetic: +, -, *, /
Comparison: =, <>, >, <, >=, <=
Logical: AND, OR, NOT
Bitwise, LIKE, IN, BETWEEN
15. Difference between GROUP BY and WHERE?
WHERE filters before aggregation. GROUP BY groups after filtering.
16. What are Views?
Virtual tables based on SQL queries. They store only query definition.
17. What are different types of constraints?
Same as Q12: NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, CHECK, DEFAULT.
18. What is difference between VARCHAR and NVARCHAR?
VARCHAR: ASCII, 1 byte per char.
NVARCHAR: Unicode, 2 bytes per char, supports multiple languages.
19. Similarity for CHAR and NCHAR?
CHAR: Fixed-length ASCII.
NCHAR: Fixed-length Unicode.
20. What are indexes and their types?
Used for faster retrieval.
Types:
- Clustered
- Non-clustered
- Unique
- Composite
- Full-text
21. What is an index? Explain its types.
Same as above. Indexes speed up queries by creating pointers to data.
22. List different types of relationships in SQL.
One-to-One
One-to-Many
Many-to-Many
23. Differentiate between UNION and UNION ALL.
UNION: Removes duplicates.
UNION ALL: Includes duplicates.
24. How many types of clauses in SQL?
Common clauses: SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY, LIMIT, OFFSET, JOIN, ON.
25. What is the difference between UNION and UNION ALL in SQL?
Same as Q23.
26. What are various types of relationships in SQL?
Same as Q22.
27. Difference between Primary Key and Secondary Key?
Primary Key: Uniquely identifies rows.
Secondary Key: May not be unique, used for lookup.
Credits: https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v/1000
1. Explain order of execution of SQL.
Order: FROM โ JOIN โ ON โ WHERE โ GROUP BY โ HAVING โ SELECT โ DISTINCT โ ORDER BY โ LIMIT. SQL queries are processed in this logical sequence, not the way they are written.
2. What is difference between WHERE and HAVING?
WHERE filters rows before aggregation, while HAVING filters groups after aggregation.
3. What is the use of GROUP BY?
GROUP BY aggregates data across rows with the same values in specified columns, commonly used with aggregate functions.
4. Explain all types of joins in SQL?
INNER JOIN: Returns matching rows from both tables.
LEFT JOIN: All rows from the left, matched rows from right.
RIGHT JOIN: All rows from the right, matched rows from left.
FULL JOIN: All rows from both, with NULLs where no match.
SELF JOIN: Joins table to itself.
CROSS JOIN: Cartesian product of both tables.
5. What are triggers in SQL?
Triggers are procedural code executed automatically in response to certain events on a table or view (INSERT, UPDATE, DELETE).
6. What is stored procedure in SQL?
A stored procedure is a set of SQL statements saved and executed on demand, useful for modularizing code.
7. Explain all types of window functions?
RANK(): Gives rank with gaps.
DENSE_RANK(): Ranks without gaps.
ROW_NUMBER(): Unique row index.
LEAD(): Access next row.
LAG(): Access previous row.
8. What is difference between DELETE and TRUNCATE?
DELETE: Row-wise deletion, can have WHERE clause, logs each row.
TRUNCATE: Deletes all rows, faster, minimal logging, cannot rollback easily.
9. What is difference between DML, DDL and DCL?
DML: Data Manipulation Language (SELECT, INSERT, UPDATE, DELETE).
DDL: Data Definition Language (CREATE, ALTER, DROP).
DCL: Data Control Language (GRANT, REVOKE).
10. What are aggregate functions?
Functions that return a single value: SUM(), AVG(), COUNT(), MIN(), MAX().
11. Which is faster: CTE or Subquery?
Performance depends on context, but subqueries are sometimes faster as CTEs may be materialized.
12. What are constraints and types?
Rules to maintain data integrity. Types: NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, CHECK, DEFAULT.
13. Types of Keys?
Primary Key
Foreign Key
Unique Key
Composite Key
Candidate Key
14. Different types of Operators?
Arithmetic: +, -, *, /
Comparison: =, <>, >, <, >=, <=
Logical: AND, OR, NOT
Bitwise, LIKE, IN, BETWEEN
15. Difference between GROUP BY and WHERE?
WHERE filters before aggregation. GROUP BY groups after filtering.
16. What are Views?
Virtual tables based on SQL queries. They store only query definition.
17. What are different types of constraints?
Same as Q12: NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, CHECK, DEFAULT.
18. What is difference between VARCHAR and NVARCHAR?
VARCHAR: ASCII, 1 byte per char.
NVARCHAR: Unicode, 2 bytes per char, supports multiple languages.
19. Similarity for CHAR and NCHAR?
CHAR: Fixed-length ASCII.
NCHAR: Fixed-length Unicode.
20. What are indexes and their types?
Used for faster retrieval.
Types:
- Clustered
- Non-clustered
- Unique
- Composite
- Full-text
21. What is an index? Explain its types.
Same as above. Indexes speed up queries by creating pointers to data.
22. List different types of relationships in SQL.
One-to-One
One-to-Many
Many-to-Many
23. Differentiate between UNION and UNION ALL.
UNION: Removes duplicates.
UNION ALL: Includes duplicates.
24. How many types of clauses in SQL?
Common clauses: SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY, LIMIT, OFFSET, JOIN, ON.
25. What is the difference between UNION and UNION ALL in SQL?
Same as Q23.
26. What are various types of relationships in SQL?
Same as Q22.
27. Difference between Primary Key and Secondary Key?
Primary Key: Uniquely identifies rows.
Secondary Key: May not be unique, used for lookup.
Credits: https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v/1000
โค4
Scenario based Interview Questions & Answers for Data Analyst
1. Scenario: You are working on a SQL database that stores customer information. The database has a table called "Orders" that contains order details. Your task is to write a SQL query to retrieve the total number of orders placed by each customer.
Question:
- Write a SQL query to find the total number of orders placed by each customer.
Expected Answer:
SELECT CustomerID, COUNT(*) AS TotalOrders
FROM Orders
GROUP BY CustomerID;
2. Scenario: You are working on a SQL database that stores employee information. The database has a table called "Employees" that contains employee details. Your task is to write a SQL query to retrieve the names of all employees who have been with the company for more than 5 years.
Question:
- Write a SQL query to find the names of employees who have been with the company for more than 5 years.
Expected Answer:
SELECT Name
FROM Employees
WHERE DATEDIFF(year, HireDate, GETDATE()) > 5;
Power BI Scenario-Based Questions
1. Scenario: You have been given a dataset in Power BI that contains sales data for a company. Your task is to create a report that shows the total sales by product category and region.
Expected Answer:
- Load the dataset into Power BI.
- Create relationships if necessary.
- Use the "Fields" pane to select the necessary fields (Product Category, Region, Sales).
- Drag these fields into the "Values" area of a new visualization (e.g., a table or bar chart).
- Use the "Filters" pane to filter data as needed.
- Format the visualization to enhance clarity and readability.
2. Scenario: You have been asked to create a Power BI dashboard that displays real-time stock prices for a set of companies. The stock prices are available through an API.
Expected Answer:
- Use Power BI Desktop to connect to the API.
- Go to "Get Data" > "Web" and enter the API URL.
- Configure the data refresh settings to ensure real-time updates (e.g., setting up a scheduled refresh or using DirectQuery if supported).
- Create visualizations using the imported data.
- Publish the report to the Power BI service and set up a data gateway if needed for continuous refresh.
3. Scenario: You have been given a Power BI report that contains multiple visualizations. The report is taking a long time to load and is impacting the performance of the application.
Expected Answer:
- Analyze the current performance using Performance Analyzer.
- Optimize data model by reducing the number of columns and rows, and removing unnecessary calculations.
- Use aggregated tables to pre-compute results.
- Simplify DAX calculations.
- Optimize visualizations by reducing the number of visuals per page and avoiding complex custom visuals.
- Ensure proper indexing on the data source.
Free SQL Resources: https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
Like if you need more similar content
Hope it helps :)
1. Scenario: You are working on a SQL database that stores customer information. The database has a table called "Orders" that contains order details. Your task is to write a SQL query to retrieve the total number of orders placed by each customer.
Question:
- Write a SQL query to find the total number of orders placed by each customer.
Expected Answer:
SELECT CustomerID, COUNT(*) AS TotalOrders
FROM Orders
GROUP BY CustomerID;
2. Scenario: You are working on a SQL database that stores employee information. The database has a table called "Employees" that contains employee details. Your task is to write a SQL query to retrieve the names of all employees who have been with the company for more than 5 years.
Question:
- Write a SQL query to find the names of employees who have been with the company for more than 5 years.
Expected Answer:
SELECT Name
FROM Employees
WHERE DATEDIFF(year, HireDate, GETDATE()) > 5;
Power BI Scenario-Based Questions
1. Scenario: You have been given a dataset in Power BI that contains sales data for a company. Your task is to create a report that shows the total sales by product category and region.
Expected Answer:
- Load the dataset into Power BI.
- Create relationships if necessary.
- Use the "Fields" pane to select the necessary fields (Product Category, Region, Sales).
- Drag these fields into the "Values" area of a new visualization (e.g., a table or bar chart).
- Use the "Filters" pane to filter data as needed.
- Format the visualization to enhance clarity and readability.
2. Scenario: You have been asked to create a Power BI dashboard that displays real-time stock prices for a set of companies. The stock prices are available through an API.
Expected Answer:
- Use Power BI Desktop to connect to the API.
- Go to "Get Data" > "Web" and enter the API URL.
- Configure the data refresh settings to ensure real-time updates (e.g., setting up a scheduled refresh or using DirectQuery if supported).
- Create visualizations using the imported data.
- Publish the report to the Power BI service and set up a data gateway if needed for continuous refresh.
3. Scenario: You have been given a Power BI report that contains multiple visualizations. The report is taking a long time to load and is impacting the performance of the application.
Expected Answer:
- Analyze the current performance using Performance Analyzer.
- Optimize data model by reducing the number of columns and rows, and removing unnecessary calculations.
- Use aggregated tables to pre-compute results.
- Simplify DAX calculations.
- Optimize visualizations by reducing the number of visuals per page and avoiding complex custom visuals.
- Ensure proper indexing on the data source.
Free SQL Resources: https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
Like if you need more similar content
Hope it helps :)
โค2
Data Analyst Interview Questions ๐
1.How to create filters in Power BI?
Filters are an integral part of Power BI reports. They are used to slice and dice the data as per the dimensions we want. Filters are created in a couple of ways.
Using Slicers: A slicer is a visual under Visualization Pane. This can be added to the design view to filter our reports. When a slicer is added to the design view, it requires a field to be added to it. For example- Slicer can be added for Country fields. Then the data can be filtered based on countries.
Using Filter Pane: The Power BI team has added a filter pane to the reports, which is a single space where we can add different fields as filters. And these fields can be added depending on whether you want to filter only one visual(Visual level filter), or all the visuals in the report page(Page level filters), or applicable to all the pages of the report(report level filters)
2.How to sort data in Power BI?
Sorting is available in multiple formats. In the data view, a common sorting option of alphabetical order is there. Apart from that, we have the option of Sort by column, where one can sort a column based on another column. The sorting option is available in visuals as well. Sort by ascending and descending option by the fields and measure present in the visual is also available.
3.How to convert pdf to excel?
Open the PDF document you want to convert in XLSX format in Acrobat DC.
Go to the right pane and click on the โExport PDFโ option.
Choose spreadsheet as the Export format.
Select โMicrosoft Excel Workbook.โ
Now click โExport.โ
Download the converted file or share it.
4. How to enable macros in excel?
Click the file tab and then click โOptions.โ
A dialog box will appear. In the โExcel Optionsโ dialog box, click on the โTrust Centerโ and then โTrust Center Settings.โ
Go to the โMacro Settingsโ and select โenable all macros.โ
Click OK to apply the macro settings.
1.How to create filters in Power BI?
Filters are an integral part of Power BI reports. They are used to slice and dice the data as per the dimensions we want. Filters are created in a couple of ways.
Using Slicers: A slicer is a visual under Visualization Pane. This can be added to the design view to filter our reports. When a slicer is added to the design view, it requires a field to be added to it. For example- Slicer can be added for Country fields. Then the data can be filtered based on countries.
Using Filter Pane: The Power BI team has added a filter pane to the reports, which is a single space where we can add different fields as filters. And these fields can be added depending on whether you want to filter only one visual(Visual level filter), or all the visuals in the report page(Page level filters), or applicable to all the pages of the report(report level filters)
2.How to sort data in Power BI?
Sorting is available in multiple formats. In the data view, a common sorting option of alphabetical order is there. Apart from that, we have the option of Sort by column, where one can sort a column based on another column. The sorting option is available in visuals as well. Sort by ascending and descending option by the fields and measure present in the visual is also available.
3.How to convert pdf to excel?
Open the PDF document you want to convert in XLSX format in Acrobat DC.
Go to the right pane and click on the โExport PDFโ option.
Choose spreadsheet as the Export format.
Select โMicrosoft Excel Workbook.โ
Now click โExport.โ
Download the converted file or share it.
4. How to enable macros in excel?
Click the file tab and then click โOptions.โ
A dialog box will appear. In the โExcel Optionsโ dialog box, click on the โTrust Centerโ and then โTrust Center Settings.โ
Go to the โMacro Settingsโ and select โenable all macros.โ
Click OK to apply the macro settings.
โค2
๐ Top 10 Data Analytics Concepts Everyone Should Know ๐
1๏ธโฃ Data Cleaning ๐งน
Removing duplicates, fixing missing or inconsistent data.
๐ Tools: Excel, Python (Pandas), SQL
2๏ธโฃ Descriptive Statistics ๐
Mean, median, mode, standard deviationโbasic measures to summarize data.
๐ Used for understanding data distribution
3๏ธโฃ Data Visualization ๐
Creating charts and dashboards to spot patterns.
๐ Tools: Power BI, Tableau, Matplotlib, Seaborn
4๏ธโฃ Exploratory Data Analysis (EDA) ๐
Identifying trends, outliers, and correlations through deep data exploration.
๐ Step before modeling
5๏ธโฃ SQL for Data Extraction ๐๏ธ
Querying databases to retrieve specific information.
๐ Focus on SELECT, JOIN, GROUP BY, WHERE
6๏ธโฃ Hypothesis Testing โ๏ธ
Making decisions using sample data (A/B testing, p-value, confidence intervals).
๐ Useful in product or marketing experiments
7๏ธโฃ Correlation vs Causation ๐
Just because two things are related doesnโt mean one causes the other!
8๏ธโฃ Data Modeling ๐ง
Creating models to predict or explain outcomes.
๐ Linear regression, decision trees, clustering
9๏ธโฃ KPIs & Metrics ๐ฏ
Understanding business performance indicators like ROI, retention rate, churn.
๐ Storytelling with Data ๐ฃ๏ธ
Translating raw numbers into insights stakeholders can act on.
๐ Use clear visuals, simple language, and real-world impact
โค๏ธ React for more
1๏ธโฃ Data Cleaning ๐งน
Removing duplicates, fixing missing or inconsistent data.
๐ Tools: Excel, Python (Pandas), SQL
2๏ธโฃ Descriptive Statistics ๐
Mean, median, mode, standard deviationโbasic measures to summarize data.
๐ Used for understanding data distribution
3๏ธโฃ Data Visualization ๐
Creating charts and dashboards to spot patterns.
๐ Tools: Power BI, Tableau, Matplotlib, Seaborn
4๏ธโฃ Exploratory Data Analysis (EDA) ๐
Identifying trends, outliers, and correlations through deep data exploration.
๐ Step before modeling
5๏ธโฃ SQL for Data Extraction ๐๏ธ
Querying databases to retrieve specific information.
๐ Focus on SELECT, JOIN, GROUP BY, WHERE
6๏ธโฃ Hypothesis Testing โ๏ธ
Making decisions using sample data (A/B testing, p-value, confidence intervals).
๐ Useful in product or marketing experiments
7๏ธโฃ Correlation vs Causation ๐
Just because two things are related doesnโt mean one causes the other!
8๏ธโฃ Data Modeling ๐ง
Creating models to predict or explain outcomes.
๐ Linear regression, decision trees, clustering
9๏ธโฃ KPIs & Metrics ๐ฏ
Understanding business performance indicators like ROI, retention rate, churn.
๐ Storytelling with Data ๐ฃ๏ธ
Translating raw numbers into insights stakeholders can act on.
๐ Use clear visuals, simple language, and real-world impact
โค๏ธ React for more
โค2
Steps to ๐๐๐ญ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ ๐๐๐ฅ๐ฅ๐ฌ from LinkedIn:
1. ๐๐ฉ๐ฉ๐ฅ๐ฒ ๐๐๐ข๐ฅ๐ฒ: Submit applications for 30-40 jobs daily to increase visibility.
2. ๐๐ข๐ฏ๐๐ซ๐ฌ๐ข๐๐ฒ ๐๐ฉ๐ฉ๐ฅ๐ข๐๐๐ญ๐ข๐จ๐ง๐ฌ: Apply for various job types, not just "easy apply" options.
3. ๐๐ฉ๐ฉ๐ฅ๐ฒ ๐๐ซ๐จ๐ฆ๐ฉ๐ญ๐ฅ๐ฒ: Turn on job alerts and apply as soon as positions are posted.
4. ๐๐๐๐ค ๐๐๐๐๐ซ๐ซ๐๐ฅ๐ฌ: For dream companies, quickly request referrals from employees. Connect with several people for better chances.
5. ๐๐ ๐๐ข๐ซ๐๐๐ญ ๐๐จ๐ซ ๐๐๐๐๐ซ๐ซ๐๐ฅs: Don't start with "Hi" or "Hello". Send a cold message (short and crisp) with what you need and the job link. If you get a response, you can share your resume for referral. Follow up after one day if needed.
6. ๐๐ฉ๐ฉ๐ฅ๐ฒ ๐๐ข๐ญ๐ก๐ข๐ง ๐๐ฅ๐ข๐ ๐ข๐๐ข๐ฅ๐ข๐ญ๐ฒ: Only apply or seek referrals for roles where you meet the qualifications (or close enough).
7. ๐๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐ ๐๐จ๐ฎ๐ซ ๐๐ซ๐จ๐๐ข๐ฅ๐: Build a network of 500+ connections, update experiences, use a professional photo, and list relevant skills.
8. ๐๐จ๐ง๐ง๐๐๐ญ ๐ฐ๐ข๐ญ๐ก ๐๐๐๐ซ๐ฎ๐ข๐ญ๐๐ซ๐ฌ: After applying, connect with job posters and recruiters, and send your CV with a cold message (short and crisp).
9. ๐๐ง๐ก๐๐ง๐๐ ๐๐ข๐ฌ๐ข๐๐ข๐ฅ๐ข๐ญ๐ฒ: Keep your profile visible, send connection requests, and share relevant content.
10. ๐๐๐ซ๐ฌ๐จ๐ง๐๐ฅ๐ข๐ณ๐ ๐๐จ๐ง๐ง๐๐๐ญ๐ข๐จ๐ง ๐๐๐ช๐ฎ๐๐ฌ๐ญ๐ฌ: Customize requests to explain your interest.
11. ๐๐ง๐ ๐๐ ๐ ๐ฐ๐ข๐ญ๐ก ๐๐จ๐ง๐ญ๐๐ง๐ญ: Like, comment, and share posts to stay visible and expand your network.
12. ๐๐ก๐จ๐ฐ๐๐๐ฌ๐ ๐๐ฑ๐ฉ๐๐ซ๐ญ๐ข๐ฌ๐: Publish articles or posts about your field to attract potential employers.
13. ๐๐จ๐ข๐ง ๐๐ซ๐จ๐ฎ๐ฉ๐ฌ: Participate in industry-related LinkedIn groups to engage and expand your network.
14. ๐๐ฉ๐๐๐ญ๐ ๐๐๐๐๐ฅ๐ข๐ง๐ ๐๐ง๐ ๐๐ฎ๐ฆ๐ฆ๐๐ซ๐ฒ: Reflect your current role, skills, and aspirations with relevant keywords.
15. ๐๐๐ช๐ฎ๐๐ฌ๐ญ ๐๐๐๐จ๐ฆ๐ฆ๐๐ง๐๐๐ญ๐ข๐จ๐ง๐ฌ: Get endorsements from colleagues, managers, and clients.
16. ๐ ๐จ๐ฅ๐ฅ๐จ๐ฐ ๐๐จ๐ฆ๐ฉ๐๐ง๐ข๐๐ฌ: Stay updated on job openings and company news by following your target companies.
1. ๐๐ฉ๐ฉ๐ฅ๐ฒ ๐๐๐ข๐ฅ๐ฒ: Submit applications for 30-40 jobs daily to increase visibility.
2. ๐๐ข๐ฏ๐๐ซ๐ฌ๐ข๐๐ฒ ๐๐ฉ๐ฉ๐ฅ๐ข๐๐๐ญ๐ข๐จ๐ง๐ฌ: Apply for various job types, not just "easy apply" options.
3. ๐๐ฉ๐ฉ๐ฅ๐ฒ ๐๐ซ๐จ๐ฆ๐ฉ๐ญ๐ฅ๐ฒ: Turn on job alerts and apply as soon as positions are posted.
4. ๐๐๐๐ค ๐๐๐๐๐ซ๐ซ๐๐ฅ๐ฌ: For dream companies, quickly request referrals from employees. Connect with several people for better chances.
5. ๐๐ ๐๐ข๐ซ๐๐๐ญ ๐๐จ๐ซ ๐๐๐๐๐ซ๐ซ๐๐ฅs: Don't start with "Hi" or "Hello". Send a cold message (short and crisp) with what you need and the job link. If you get a response, you can share your resume for referral. Follow up after one day if needed.
6. ๐๐ฉ๐ฉ๐ฅ๐ฒ ๐๐ข๐ญ๐ก๐ข๐ง ๐๐ฅ๐ข๐ ๐ข๐๐ข๐ฅ๐ข๐ญ๐ฒ: Only apply or seek referrals for roles where you meet the qualifications (or close enough).
7. ๐๐ฉ๐ญ๐ข๐ฆ๐ข๐ณ๐ ๐๐จ๐ฎ๐ซ ๐๐ซ๐จ๐๐ข๐ฅ๐: Build a network of 500+ connections, update experiences, use a professional photo, and list relevant skills.
8. ๐๐จ๐ง๐ง๐๐๐ญ ๐ฐ๐ข๐ญ๐ก ๐๐๐๐ซ๐ฎ๐ข๐ญ๐๐ซ๐ฌ: After applying, connect with job posters and recruiters, and send your CV with a cold message (short and crisp).
9. ๐๐ง๐ก๐๐ง๐๐ ๐๐ข๐ฌ๐ข๐๐ข๐ฅ๐ข๐ญ๐ฒ: Keep your profile visible, send connection requests, and share relevant content.
10. ๐๐๐ซ๐ฌ๐จ๐ง๐๐ฅ๐ข๐ณ๐ ๐๐จ๐ง๐ง๐๐๐ญ๐ข๐จ๐ง ๐๐๐ช๐ฎ๐๐ฌ๐ญ๐ฌ: Customize requests to explain your interest.
11. ๐๐ง๐ ๐๐ ๐ ๐ฐ๐ข๐ญ๐ก ๐๐จ๐ง๐ญ๐๐ง๐ญ: Like, comment, and share posts to stay visible and expand your network.
12. ๐๐ก๐จ๐ฐ๐๐๐ฌ๐ ๐๐ฑ๐ฉ๐๐ซ๐ญ๐ข๐ฌ๐: Publish articles or posts about your field to attract potential employers.
13. ๐๐จ๐ข๐ง ๐๐ซ๐จ๐ฎ๐ฉ๐ฌ: Participate in industry-related LinkedIn groups to engage and expand your network.
14. ๐๐ฉ๐๐๐ญ๐ ๐๐๐๐๐ฅ๐ข๐ง๐ ๐๐ง๐ ๐๐ฎ๐ฆ๐ฆ๐๐ซ๐ฒ: Reflect your current role, skills, and aspirations with relevant keywords.
15. ๐๐๐ช๐ฎ๐๐ฌ๐ญ ๐๐๐๐จ๐ฆ๐ฆ๐๐ง๐๐๐ญ๐ข๐จ๐ง๐ฌ: Get endorsements from colleagues, managers, and clients.
16. ๐ ๐จ๐ฅ๐ฅ๐จ๐ฐ ๐๐จ๐ฆ๐ฉ๐๐ง๐ข๐๐ฌ: Stay updated on job openings and company news by following your target companies.
โค1
Top 10 Advanced SQL Queries for Data Mastery
1. Recursive CTE (Common Table Expressions)
Use a recursive CTE to traverse hierarchical data, such as employees and their managers.
2. Pivoting Data
Turn row data into columns (e.g., show product categories as separate columns).
3. Window Functions
Calculate a running total of sales based on order date.
4. Ranking with Window Functions
Rank employeesโ salaries within each department.
5. Finding Gaps in Sequences
Identify missing values in a sequential dataset (e.g., order numbers).
6. Unpivoting Data
Convert columns into rows to simplify analysis of multiple attributes.
7. Finding Consecutive Events
Check for consecutive days/orders for the same product using
8. Aggregation with the FILTER Clause
Calculate selective averages (e.g., only for the Sales department).
9. JSON Data Extraction
Extract values from JSON columns directly in SQL.
10. Using Temporary Tables
Create a temporary table for intermediate results, then join it with other tables.
Why These Matter
Advanced SQL queries let you handle complex data manipulation and analysis tasks with ease. From traversing hierarchical relationships to reshaping data (pivot/unpivot) and working with JSON, these techniques expand your ability to derive insights from relational databases.
Keep practicing these queries to solidify your SQL expertise and make more data-driven decisions!
Here you can find essential SQL Interview Resources๐
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
Like this post if you need more ๐โค๏ธ
Hope it helps :)
#sql #dataanalyst
1. Recursive CTE (Common Table Expressions)
Use a recursive CTE to traverse hierarchical data, such as employees and their managers.
WITH RECURSIVE EmployeeHierarchy AS (
SELECT employee_id, employee_name, manager_id
FROM employees
WHERE manager_id IS NULL
UNION ALL
SELECT e.employee_id, e.employee_name, e.manager_id
FROM employees e
JOIN EmployeeHierarchy eh ON e.manager_id = eh.employee_id
)
SELECT *
FROM EmployeeHierarchy;
2. Pivoting Data
Turn row data into columns (e.g., show product categories as separate columns).
SELECT *
FROM (
SELECT TO_CHAR(order_date, 'YYYY-MM') AS month, product_category, sales_amount
FROM sales
) AS pivot_data
PIVOT (
SUM(sales_amount)
FOR product_category IN ('Electronics', 'Clothing', 'Books')
) AS pivoted_sales;
3. Window Functions
Calculate a running total of sales based on order date.
SELECT
order_date,
sales_amount,
SUM(sales_amount) OVER (ORDER BY order_date) AS running_total
FROM sales;
4. Ranking with Window Functions
Rank employeesโ salaries within each department.
SELECT
department,
employee_name,
salary,
RANK() OVER (PARTITION BY department ORDER BY salary DESC) AS salary_rank
FROM employees;
5. Finding Gaps in Sequences
Identify missing values in a sequential dataset (e.g., order numbers).
WITH Sequences AS (
SELECT MIN(order_number) AS start_seq, MAX(order_number) AS end_seq
FROM orders
)
SELECT start_seq + 1 AS missing_sequence
FROM Sequences
WHERE NOT EXISTS (
SELECT 1
FROM orders o
WHERE o.order_number = Sequences.start_seq + 1
);
6. Unpivoting Data
Convert columns into rows to simplify analysis of multiple attributes.
SELECT
product_id,
attribute_name,
attribute_value
FROM products
UNPIVOT (
attribute_value FOR attribute_name IN (color, size, weight)
) AS unpivoted_data;
7. Finding Consecutive Events
Check for consecutive days/orders for the same product using
LAG().WITH ConsecutiveOrders AS (
SELECT
product_id,
order_date,
LAG(order_date) OVER (PARTITION BY product_id ORDER BY order_date) AS prev_order_date
FROM orders
)
SELECT product_id, order_date, prev_order_date
FROM ConsecutiveOrders
WHERE order_date - prev_order_date = 1;
8. Aggregation with the FILTER Clause
Calculate selective averages (e.g., only for the Sales department).
SELECT
department,
AVG(salary) FILTER (WHERE department = 'Sales') AS avg_salary_sales
FROM employees
GROUP BY department;
9. JSON Data Extraction
Extract values from JSON columns directly in SQL.
SELECT
order_id,
customer_id,
order_details ->> 'product' AS product_name,
CAST(order_details ->> 'quantity' AS INTEGER) AS quantity
FROM orders;
10. Using Temporary Tables
Create a temporary table for intermediate results, then join it with other tables.
-- Create a temporary table
CREATE TEMPORARY TABLE temp_product_sales AS
SELECT product_id, SUM(sales_amount) AS total_sales
FROM sales
GROUP BY product_id;
-- Use the temp table
SELECT p.product_name, t.total_sales
FROM products p
JOIN temp_product_sales t ON p.product_id = t.product_id;
Why These Matter
Advanced SQL queries let you handle complex data manipulation and analysis tasks with ease. From traversing hierarchical relationships to reshaping data (pivot/unpivot) and working with JSON, these techniques expand your ability to derive insights from relational databases.
Keep practicing these queries to solidify your SQL expertise and make more data-driven decisions!
Here you can find essential SQL Interview Resources๐
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
Like this post if you need more ๐โค๏ธ
Hope it helps :)
#sql #dataanalyst
โค4
The Only SQL You Actually Need For Your First Job DataAnalytics
The Learning Trap:
* Complex subqueries
* Advanced CTEs
* Recursive queries
* 100+ tutorials watched
* 0 practical experience
Reality Check:
75% of daily SQL tasks:
* Basic SELECT, FROM, WHERE
* JOINs
* GROUP BY
* ORDER BY
* Simple aggregations
* ROW_NUMBER
Like for detailed explanation โค๏ธ
#sql
The Learning Trap:
* Complex subqueries
* Advanced CTEs
* Recursive queries
* 100+ tutorials watched
* 0 practical experience
Reality Check:
75% of daily SQL tasks:
* Basic SELECT, FROM, WHERE
* JOINs
* GROUP BY
* ORDER BY
* Simple aggregations
* ROW_NUMBER
Like for detailed explanation โค๏ธ
#sql
โค7
Complete SQL Topics for Data Analysts ๐๐
1. Introduction to SQL:
- Basic syntax and structure
- Understanding databases and tables
2. Querying Data:
- SELECT statement
- Filtering data using WHERE clause
- Sorting data with ORDER BY
3. Joins:
- INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL JOIN
- Combining data from multiple tables
4. Aggregation Functions:
- GROUP BY
- Aggregate functions like COUNT, SUM, AVG, MAX, MIN
5. Subqueries:
- Using subqueries in SELECT, WHERE, and HAVING clauses
6. Data Modification:
- INSERT, UPDATE, DELETE statements
- Transactions and Rollback
7. Data Types and Constraints:
- Understanding various data types (e.g., INT, VARCHAR)
- Using constraints (e.g., PRIMARY KEY, FOREIGN KEY)
8. Indexes:
- Creating and managing indexes for performance optimization
9. Views:
- Creating and using views for simplified querying
10. Stored Procedures and Functions:
- Writing and executing stored procedures
- Creating and using functions
11. Normalization:
- Understanding database normalization concepts
12. Data Import and Export:
- Importing and exporting data using SQL
13. Window Functions:
- ROW_NUMBER(), RANK(), DENSE_RANK(), and others
14. Advanced Filtering:
- Using CASE statements for conditional logic
15. Advanced Join Techniques:
- Self-joins and other advanced join scenarios
16. Analytical Functions:
- LAG(), LEAD(), OVER() for advanced analytics
17. Working with Dates and Times:
- Date and time functions and formatting
18. Performance Tuning:
- Query optimization strategies
19. Security:
- Understanding SQL injection and best practices for security
20. Handling NULL Values:
- Dealing with NULL values in queries
Ensure hands-on practice on these topics to strengthen your SQL skills.
Since SQL is one of the most essential skill for data analysts, I have decided to teach each topic daily in this channel for free. Like this post if you want me to continue this SQL series ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
1. Introduction to SQL:
- Basic syntax and structure
- Understanding databases and tables
2. Querying Data:
- SELECT statement
- Filtering data using WHERE clause
- Sorting data with ORDER BY
3. Joins:
- INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL JOIN
- Combining data from multiple tables
4. Aggregation Functions:
- GROUP BY
- Aggregate functions like COUNT, SUM, AVG, MAX, MIN
5. Subqueries:
- Using subqueries in SELECT, WHERE, and HAVING clauses
6. Data Modification:
- INSERT, UPDATE, DELETE statements
- Transactions and Rollback
7. Data Types and Constraints:
- Understanding various data types (e.g., INT, VARCHAR)
- Using constraints (e.g., PRIMARY KEY, FOREIGN KEY)
8. Indexes:
- Creating and managing indexes for performance optimization
9. Views:
- Creating and using views for simplified querying
10. Stored Procedures and Functions:
- Writing and executing stored procedures
- Creating and using functions
11. Normalization:
- Understanding database normalization concepts
12. Data Import and Export:
- Importing and exporting data using SQL
13. Window Functions:
- ROW_NUMBER(), RANK(), DENSE_RANK(), and others
14. Advanced Filtering:
- Using CASE statements for conditional logic
15. Advanced Join Techniques:
- Self-joins and other advanced join scenarios
16. Analytical Functions:
- LAG(), LEAD(), OVER() for advanced analytics
17. Working with Dates and Times:
- Date and time functions and formatting
18. Performance Tuning:
- Query optimization strategies
19. Security:
- Understanding SQL injection and best practices for security
20. Handling NULL Values:
- Dealing with NULL values in queries
Ensure hands-on practice on these topics to strengthen your SQL skills.
Since SQL is one of the most essential skill for data analysts, I have decided to teach each topic daily in this channel for free. Like this post if you want me to continue this SQL series ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
โค3
Master SQL step-by-step! From basics to advanced, here are the key topics you need for a solid SQL foundation. ๐
1. Foundations:
- Learn basic SQL syntax, including SELECT, FROM, WHERE clauses.
- Understand data types, constraints, and the basic structure of a database.
2. Database Design:
- Study database normalization to ensure efficient data organization.
- Learn about primary keys, foreign keys, and relationships between tables.
3. Queries and Joins:
- Practice writing simple to complex SELECT queries.
- Master different types of joins (INNER, LEFT, RIGHT, FULL) to combine data from multiple tables.
4. Aggregation and Grouping:
- Explore aggregate functions like COUNT, SUM, AVG, MAX, and MIN.
- Understand GROUP BY clause for summarizing data based on specific criteria.
5. Subqueries and Nested Queries:
- Learn how to use subqueries to perform operations within another query.
- Understand the concept of nested queries and their practical applications.
6. Indexing and Optimization:
- Study indexing for enhancing query performance.
- Learn optimization techniques, such as avoiding SELECT * and using appropriate indexes.
7. Transactions and ACID Properties:
- Understand the basics of transactions and their role in maintaining data integrity.
- Explore ACID properties (Atomicity, Consistency, Isolation, Durability) in database management.
8. Views and Stored Procedures:
- Create and use views to simplify complex queries.
- Learn about stored procedures for reusable and efficient query execution.
9. Security and Permissions:
- Understand SQL injection risks and how to prevent them.
- Learn how to manage user permissions and access control.
10. Advanced Topics:
- Explore advanced SQL concepts like window functions, CTEs (Common Table Expressions), and recursive queries.
- Familiarize yourself with database-specific features (e.g., PostgreSQL's JSON functions, MySQL's spatial data types).
11. Real-world Projects:
- Apply your knowledge to real-world scenarios by working on projects.
- Practice with sample databases or create your own to reinforce your skills.
12. Continuous Learning:
- Stay updated on SQL advancements and industry best practices.
- Engage with online communities, forums, and resources for ongoing learning and problem-solving.
Here are some free resources to learn & practice SQL ๐๐
SQL For Data Analysis: https://t.me/sqlanalyst
For Practice- https://stratascratch.com/?via=free
SQL Learning Series: https://t.me/sqlspecialist/567
Top 10 SQL Projects with Datasets: https://t.me/DataPortfolio/16
Join for more free resources: https://t.me/free4unow_backup
ENJOY LEARNING ๐๐
1. Foundations:
- Learn basic SQL syntax, including SELECT, FROM, WHERE clauses.
- Understand data types, constraints, and the basic structure of a database.
2. Database Design:
- Study database normalization to ensure efficient data organization.
- Learn about primary keys, foreign keys, and relationships between tables.
3. Queries and Joins:
- Practice writing simple to complex SELECT queries.
- Master different types of joins (INNER, LEFT, RIGHT, FULL) to combine data from multiple tables.
4. Aggregation and Grouping:
- Explore aggregate functions like COUNT, SUM, AVG, MAX, and MIN.
- Understand GROUP BY clause for summarizing data based on specific criteria.
5. Subqueries and Nested Queries:
- Learn how to use subqueries to perform operations within another query.
- Understand the concept of nested queries and their practical applications.
6. Indexing and Optimization:
- Study indexing for enhancing query performance.
- Learn optimization techniques, such as avoiding SELECT * and using appropriate indexes.
7. Transactions and ACID Properties:
- Understand the basics of transactions and their role in maintaining data integrity.
- Explore ACID properties (Atomicity, Consistency, Isolation, Durability) in database management.
8. Views and Stored Procedures:
- Create and use views to simplify complex queries.
- Learn about stored procedures for reusable and efficient query execution.
9. Security and Permissions:
- Understand SQL injection risks and how to prevent them.
- Learn how to manage user permissions and access control.
10. Advanced Topics:
- Explore advanced SQL concepts like window functions, CTEs (Common Table Expressions), and recursive queries.
- Familiarize yourself with database-specific features (e.g., PostgreSQL's JSON functions, MySQL's spatial data types).
11. Real-world Projects:
- Apply your knowledge to real-world scenarios by working on projects.
- Practice with sample databases or create your own to reinforce your skills.
12. Continuous Learning:
- Stay updated on SQL advancements and industry best practices.
- Engage with online communities, forums, and resources for ongoing learning and problem-solving.
Here are some free resources to learn & practice SQL ๐๐
SQL For Data Analysis: https://t.me/sqlanalyst
For Practice- https://stratascratch.com/?via=free
SQL Learning Series: https://t.me/sqlspecialist/567
Top 10 SQL Projects with Datasets: https://t.me/DataPortfolio/16
Join for more free resources: https://t.me/free4unow_backup
ENJOY LEARNING ๐๐
โค2