π¨ CVE-2025-66524
Apache NiFi 1.20.0 through 2.6.0 include the GetAsanaObject Processor, which requires integration with a configurable Distribute Map Cache Client Service for storing and retrieving state information. The GetAsanaObject Processor used generic Java Object serialization and deserialization without filtering. Unfiltered Java object deserialization does not provide protection against crafted state information stored in the cache server configured for GetAsanaObject. Exploitation requires an Apache NiFi system running with the GetAsanaObject Processor, and direct access to the configured cache server. Upgrading to Apache NiFi 2.7.0 is the recommended mitigation, which replaces Java Object serialization with JSON serialization. Removing the GetAsanaObject Processor located in the nifi-asana-processors-nar bundle also prevents exploitation.
π@cveNotify
Apache NiFi 1.20.0 through 2.6.0 include the GetAsanaObject Processor, which requires integration with a configurable Distribute Map Cache Client Service for storing and retrieving state information. The GetAsanaObject Processor used generic Java Object serialization and deserialization without filtering. Unfiltered Java object deserialization does not provide protection against crafted state information stored in the cache server configured for GetAsanaObject. Exploitation requires an Apache NiFi system running with the GetAsanaObject Processor, and direct access to the configured cache server. Upgrading to Apache NiFi 2.7.0 is the recommended mitigation, which replaces Java Object serialization with JSON serialization. Removing the GetAsanaObject Processor located in the nifi-asana-processors-nar bundle also prevents exploitation.
π@cveNotify
π¨ CVE-2025-39684
In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized memory in do_insn_ioctl() and do_insnlist_ioctl()
syzbot reports a KMSAN kernel-infoleak in `do_insn_ioctl()`. A kernel
buffer is allocated to hold `insn->n` samples (each of which is an
`unsigned int`). For some instruction types, `insn->n` samples are
copied back to user-space, unless an error code is being returned. The
problem is that not all the instruction handlers that need to return
data to userspace fill in the whole `insn->n` samples, so that there is
an information leak. There is a similar syzbot report for
`do_insnlist_ioctl()`, although it does not have a reproducer for it at
the time of writing.
One culprit is `insn_rw_emulate_bits()` which is used as the handler for
`INSN_READ` or `INSN_WRITE` instructions for subdevices that do not have
a specific handler for that instruction, but do have an `INSN_BITS`
handler. For `INSN_READ` it only fills in at most 1 sample, so if
`insn->n` is greater than 1, the remaining `insn->n - 1` samples copied
to userspace will be uninitialized kernel data.
Another culprit is `vm80xx_ai_insn_read()` in the "vm80xx" driver. It
never returns an error, even if it fails to fill the buffer.
Fix it in `do_insn_ioctl()` and `do_insnlist_ioctl()` by making sure
that uninitialized parts of the allocated buffer are zeroed before
handling each instruction.
Thanks to Arnaud Lecomte for their fix to `do_insn_ioctl()`. That fix
replaced the call to `kmalloc_array()` with `kcalloc()`, but it is not
always necessary to clear the whole buffer.
π@cveNotify
In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized memory in do_insn_ioctl() and do_insnlist_ioctl()
syzbot reports a KMSAN kernel-infoleak in `do_insn_ioctl()`. A kernel
buffer is allocated to hold `insn->n` samples (each of which is an
`unsigned int`). For some instruction types, `insn->n` samples are
copied back to user-space, unless an error code is being returned. The
problem is that not all the instruction handlers that need to return
data to userspace fill in the whole `insn->n` samples, so that there is
an information leak. There is a similar syzbot report for
`do_insnlist_ioctl()`, although it does not have a reproducer for it at
the time of writing.
One culprit is `insn_rw_emulate_bits()` which is used as the handler for
`INSN_READ` or `INSN_WRITE` instructions for subdevices that do not have
a specific handler for that instruction, but do have an `INSN_BITS`
handler. For `INSN_READ` it only fills in at most 1 sample, so if
`insn->n` is greater than 1, the remaining `insn->n - 1` samples copied
to userspace will be uninitialized kernel data.
Another culprit is `vm80xx_ai_insn_read()` in the "vm80xx" driver. It
never returns an error, even if it fails to fill the buffer.
Fix it in `do_insn_ioctl()` and `do_insnlist_ioctl()` by making sure
that uninitialized parts of the allocated buffer are zeroed before
handling each instruction.
Thanks to Arnaud Lecomte for their fix to `do_insn_ioctl()`. That fix
replaced the call to `kmalloc_array()` with `kcalloc()`, but it is not
always necessary to clear the whole buffer.
π@cveNotify
π¨ CVE-2025-38735
In the Linux kernel, the following vulnerability has been resolved:
gve: prevent ethtool ops after shutdown
A crash can occur if an ethtool operation is invoked
after shutdown() is called.
shutdown() is invoked during system shutdown to stop DMA operations
without performing expensive deallocations. It is discouraged to
unregister the netdev in this path, so the device may still be visible
to userspace and kernel helpers.
In gve, shutdown() tears down most internal data structures. If an
ethtool operation is dispatched after shutdown(), it will dereference
freed or NULL pointers, leading to a kernel panic. While graceful
shutdown normally quiesces userspace before invoking the reboot
syscall, forced shutdowns (as observed on GCP VMs) can still trigger
this path.
Fix by calling netif_device_detach() in shutdown().
This marks the device as detached so the ethtool ioctl handler
will skip dispatching operations to the driver.
π@cveNotify
In the Linux kernel, the following vulnerability has been resolved:
gve: prevent ethtool ops after shutdown
A crash can occur if an ethtool operation is invoked
after shutdown() is called.
shutdown() is invoked during system shutdown to stop DMA operations
without performing expensive deallocations. It is discouraged to
unregister the netdev in this path, so the device may still be visible
to userspace and kernel helpers.
In gve, shutdown() tears down most internal data structures. If an
ethtool operation is dispatched after shutdown(), it will dereference
freed or NULL pointers, leading to a kernel panic. While graceful
shutdown normally quiesces userspace before invoking the reboot
syscall, forced shutdowns (as observed on GCP VMs) can still trigger
this path.
Fix by calling netif_device_detach() in shutdown().
This marks the device as detached so the ethtool ioctl handler
will skip dispatching operations to the driver.
π@cveNotify
π¨ CVE-2025-38736
In the Linux kernel, the following vulnerability has been resolved:
net: usb: asix_devices: Fix PHY address mask in MDIO bus initialization
Syzbot reported shift-out-of-bounds exception on MDIO bus initialization.
The PHY address should be masked to 5 bits (0-31). Without this
mask, invalid PHY addresses could be used, potentially causing issues
with MDIO bus operations.
Fix this by masking the PHY address with 0x1f (31 decimal) to ensure
it stays within the valid range.
π@cveNotify
In the Linux kernel, the following vulnerability has been resolved:
net: usb: asix_devices: Fix PHY address mask in MDIO bus initialization
Syzbot reported shift-out-of-bounds exception on MDIO bus initialization.
The PHY address should be masked to 5 bits (0-31). Without this
mask, invalid PHY addresses could be used, potentially causing issues
with MDIO bus operations.
Fix this by masking the PHY address with 0x1f (31 decimal) to ensure
it stays within the valid range.
π@cveNotify
π¨ CVE-2025-39681
In the Linux kernel, the following vulnerability has been resolved:
x86/cpu/hygon: Add missing resctrl_cpu_detect() in bsp_init helper
Since
923f3a2b48bd ("x86/resctrl: Query LLC monitoring properties once during boot")
resctrl_cpu_detect() has been moved from common CPU initialization code to
the vendor-specific BSP init helper, while Hygon didn't put that call in their
code.
This triggers a division by zero fault during early booting stage on our
machines with X86_FEATURE_CQM* supported, where get_rdt_mon_resources() tries
to calculate mon_l3_config with uninitialized boot_cpu_data.x86_cache_occ_scale.
Add the missing resctrl_cpu_detect() in the Hygon BSP init helper.
[ bp: Massage commit message. ]
π@cveNotify
In the Linux kernel, the following vulnerability has been resolved:
x86/cpu/hygon: Add missing resctrl_cpu_detect() in bsp_init helper
Since
923f3a2b48bd ("x86/resctrl: Query LLC monitoring properties once during boot")
resctrl_cpu_detect() has been moved from common CPU initialization code to
the vendor-specific BSP init helper, while Hygon didn't put that call in their
code.
This triggers a division by zero fault during early booting stage on our
machines with X86_FEATURE_CQM* supported, where get_rdt_mon_resources() tries
to calculate mon_l3_config with uninitialized boot_cpu_data.x86_cache_occ_scale.
Add the missing resctrl_cpu_detect() in the Hygon BSP init helper.
[ bp: Massage commit message. ]
π@cveNotify
π¨ CVE-2025-39683
In the Linux kernel, the following vulnerability has been resolved:
tracing: Limit access to parser->buffer when trace_get_user failed
When the length of the string written to set_ftrace_filter exceeds
FTRACE_BUFF_MAX, the following KASAN alarm will be triggered:
BUG: KASAN: slab-out-of-bounds in strsep+0x18c/0x1b0
Read of size 1 at addr ffff0000d00bd5ba by task ash/165
CPU: 1 UID: 0 PID: 165 Comm: ash Not tainted 6.16.0-g6bcdbd62bd56-dirty
Hardware name: linux,dummy-virt (DT)
Call trace:
show_stack+0x34/0x50 (C)
dump_stack_lvl+0xa0/0x158
print_address_description.constprop.0+0x88/0x398
print_report+0xb0/0x280
kasan_report+0xa4/0xf0
__asan_report_load1_noabort+0x20/0x30
strsep+0x18c/0x1b0
ftrace_process_regex.isra.0+0x100/0x2d8
ftrace_regex_release+0x484/0x618
__fput+0x364/0xa58
____fput+0x28/0x40
task_work_run+0x154/0x278
do_notify_resume+0x1f0/0x220
el0_svc+0xec/0xf0
el0t_64_sync_handler+0xa0/0xe8
el0t_64_sync+0x1ac/0x1b0
The reason is that trace_get_user will fail when processing a string
longer than FTRACE_BUFF_MAX, but not set the end of parser->buffer to 0.
Then an OOB access will be triggered in ftrace_regex_release->
ftrace_process_regex->strsep->strpbrk. We can solve this problem by
limiting access to parser->buffer when trace_get_user failed.
π@cveNotify
In the Linux kernel, the following vulnerability has been resolved:
tracing: Limit access to parser->buffer when trace_get_user failed
When the length of the string written to set_ftrace_filter exceeds
FTRACE_BUFF_MAX, the following KASAN alarm will be triggered:
BUG: KASAN: slab-out-of-bounds in strsep+0x18c/0x1b0
Read of size 1 at addr ffff0000d00bd5ba by task ash/165
CPU: 1 UID: 0 PID: 165 Comm: ash Not tainted 6.16.0-g6bcdbd62bd56-dirty
Hardware name: linux,dummy-virt (DT)
Call trace:
show_stack+0x34/0x50 (C)
dump_stack_lvl+0xa0/0x158
print_address_description.constprop.0+0x88/0x398
print_report+0xb0/0x280
kasan_report+0xa4/0xf0
__asan_report_load1_noabort+0x20/0x30
strsep+0x18c/0x1b0
ftrace_process_regex.isra.0+0x100/0x2d8
ftrace_regex_release+0x484/0x618
__fput+0x364/0xa58
____fput+0x28/0x40
task_work_run+0x154/0x278
do_notify_resume+0x1f0/0x220
el0_svc+0xec/0xf0
el0t_64_sync_handler+0xa0/0xe8
el0t_64_sync+0x1ac/0x1b0
The reason is that trace_get_user will fail when processing a string
longer than FTRACE_BUFF_MAX, but not set the end of parser->buffer to 0.
Then an OOB access will be triggered in ftrace_regex_release->
ftrace_process_regex->strsep->strpbrk. We can solve this problem by
limiting access to parser->buffer when trace_get_user failed.
π@cveNotify
π¨ CVE-2023-4911
A buffer overflow was discovered in the GNU C Library's dynamic loader ld.so while processing the GLIBC_TUNABLES environment variable. This issue could allow a local attacker to use maliciously crafted GLIBC_TUNABLES environment variables when launching binaries with SUID permission to execute code with elevated privileges.
π@cveNotify
A buffer overflow was discovered in the GNU C Library's dynamic loader ld.so while processing the GLIBC_TUNABLES environment variable. This issue could allow a local attacker to use maliciously crafted GLIBC_TUNABLES environment variables when launching binaries with SUID permission to execute code with elevated privileges.
π@cveNotify
π¨ CVE-2025-38352
In the Linux kernel, the following vulnerability has been resolved:
posix-cpu-timers: fix race between handle_posix_cpu_timers() and posix_cpu_timer_del()
If an exiting non-autoreaping task has already passed exit_notify() and
calls handle_posix_cpu_timers() from IRQ, it can be reaped by its parent
or debugger right after unlock_task_sighand().
If a concurrent posix_cpu_timer_del() runs at that moment, it won't be
able to detect timer->it.cpu.firing != 0: cpu_timer_task_rcu() and/or
lock_task_sighand() will fail.
Add the tsk->exit_state check into run_posix_cpu_timers() to fix this.
This fix is not needed if CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y, because
exit_task_work() is called before exit_notify(). But the check still
makes sense, task_work_add(&tsk->posix_cputimers_work.work) will fail
anyway in this case.
π@cveNotify
In the Linux kernel, the following vulnerability has been resolved:
posix-cpu-timers: fix race between handle_posix_cpu_timers() and posix_cpu_timer_del()
If an exiting non-autoreaping task has already passed exit_notify() and
calls handle_posix_cpu_timers() from IRQ, it can be reaped by its parent
or debugger right after unlock_task_sighand().
If a concurrent posix_cpu_timer_del() runs at that moment, it won't be
able to detect timer->it.cpu.firing != 0: cpu_timer_task_rcu() and/or
lock_task_sighand() will fail.
Add the tsk->exit_state check into run_posix_cpu_timers() to fix this.
This fix is not needed if CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y, because
exit_task_work() is called before exit_notify(). But the check still
makes sense, task_work_add(&tsk->posix_cputimers_work.work) will fail
anyway in this case.
π@cveNotify
π¨ CVE-2025-61662
A Use-After-Free vulnerability has been discovered in GRUB's gettext module. This flaw stems from a programming error where the gettext command remains registered in memory after its module is unloaded. An attacker can exploit this condition by invoking the orphaned command, causing the application to access a memory location that is no longer valid. An attacker could exploit this vulnerability to cause grub to crash, leading to a Denial of Service. Possible data integrity or confidentiality compromise is not discarded.
π@cveNotify
A Use-After-Free vulnerability has been discovered in GRUB's gettext module. This flaw stems from a programming error where the gettext command remains registered in memory after its module is unloaded. An attacker can exploit this condition by invoking the orphaned command, causing the application to access a memory location that is no longer valid. An attacker could exploit this vulnerability to cause grub to crash, leading to a Denial of Service. Possible data integrity or confidentiality compromise is not discarded.
π@cveNotify
π¨ CVE-2025-13225
Tanium addressed an arbitrary file deletion vulnerability in TanOS.
π@cveNotify
Tanium addressed an arbitrary file deletion vulnerability in TanOS.
π@cveNotify
π¨ CVE-2025-63220
The Sound4 FIRST web-based management interface is vulnerable to Remote Code Execution (RCE) via a malicious firmware update package. The update mechanism fails to validate the integrity of manual.sh, allowing an attacker to inject arbitrary commands by modifying this script and repackaging the firmware.
π@cveNotify
The Sound4 FIRST web-based management interface is vulnerable to Remote Code Execution (RCE) via a malicious firmware update package. The update mechanism fails to validate the integrity of manual.sh, allowing an attacker to inject arbitrary commands by modifying this script and repackaging the firmware.
π@cveNotify
GitHub
my--cve-vulnerability-research/CVE-2025-63220_Sound4 FIRST RCE at main Β· shiky8/my--cve-vulnerability-research
This repository contains information on all of the CVEs I found. - shiky8/my--cve-vulnerability-research
π¨ CVE-2025-13442
A security vulnerability has been detected in UTT θΏε 750W up to 3.2.2-191225. Affected by this vulnerability is the function system of the file /goform/formPdbUpConfig. Such manipulation of the argument policyNames leads to command injection. The attack may be launched remotely. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
π@cveNotify
A security vulnerability has been detected in UTT θΏε 750W up to 3.2.2-191225. Affected by this vulnerability is the function system of the file /goform/formPdbUpConfig. Such manipulation of the argument policyNames leads to command injection. The attack may be launched remotely. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
π@cveNotify
GitHub
Buffer Overflow / Command Injection (insufficient input validation) in UTT Jinqi 750W `/goform/formPdbUpConfig` (Denial of Serviceβ¦
Vulnerability Title Buffer Overflow / Command Injection (insufficient input validation) in UTT Jinqi 750W /goform/formPdbUpConfig (Denial of Service / Potential RCE) Summary Vendor: UTT (AiTai) Pro...
π¨ CVE-2024-42508
This vulnerability could be exploited, leading to unauthorized disclosure of information to authenticated users.
π@cveNotify
This vulnerability could be exploited, leading to unauthorized disclosure of information to authenticated users.
π@cveNotify
π¨ CVE-2025-38723
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: BPF: Fix jump offset calculation in tailcall
The extra pass of bpf_int_jit_compile() skips JIT context initialization
which essentially skips offset calculation leaving out_offset = -1, so
the jmp_offset in emit_bpf_tail_call is calculated by
"#define jmp_offset (out_offset - (cur_offset))"
is a negative number, which is wrong. The final generated assembly are
as follow.
54: bgeu $a2, $t1, -8 # 0x0000004c
58: addi.d $a6, $s5, -1
5c: bltz $a6, -16 # 0x0000004c
60: alsl.d $t2, $a2, $a1, 0x3
64: ld.d $t2, $t2, 264
68: beq $t2, $zero, -28 # 0x0000004c
Before apply this patch, the follow test case will reveal soft lock issues.
cd tools/testing/selftests/bpf/
./test_progs --allow=tailcalls/tailcall_bpf2bpf_1
dmesg:
watchdog: BUG: soft lockup - CPU#2 stuck for 26s! [test_progs:25056]
π@cveNotify
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: BPF: Fix jump offset calculation in tailcall
The extra pass of bpf_int_jit_compile() skips JIT context initialization
which essentially skips offset calculation leaving out_offset = -1, so
the jmp_offset in emit_bpf_tail_call is calculated by
"#define jmp_offset (out_offset - (cur_offset))"
is a negative number, which is wrong. The final generated assembly are
as follow.
54: bgeu $a2, $t1, -8 # 0x0000004c
58: addi.d $a6, $s5, -1
5c: bltz $a6, -16 # 0x0000004c
60: alsl.d $t2, $a2, $a1, 0x3
64: ld.d $t2, $t2, 264
68: beq $t2, $zero, -28 # 0x0000004c
Before apply this patch, the follow test case will reveal soft lock issues.
cd tools/testing/selftests/bpf/
./test_progs --allow=tailcalls/tailcall_bpf2bpf_1
dmesg:
watchdog: BUG: soft lockup - CPU#2 stuck for 26s! [test_progs:25056]
π@cveNotify
π¨ CVE-2025-38724
In the Linux kernel, the following vulnerability has been resolved:
nfsd: handle get_client_locked() failure in nfsd4_setclientid_confirm()
Lei Lu recently reported that nfsd4_setclientid_confirm() did not check
the return value from get_client_locked(). a SETCLIENTID_CONFIRM could
race with a confirmed client expiring and fail to get a reference. That
could later lead to a UAF.
Fix this by getting a reference early in the case where there is an
extant confirmed client. If that fails then treat it as if there were no
confirmed client found at all.
In the case where the unconfirmed client is expiring, just fail and
return the result from get_client_locked().
π@cveNotify
In the Linux kernel, the following vulnerability has been resolved:
nfsd: handle get_client_locked() failure in nfsd4_setclientid_confirm()
Lei Lu recently reported that nfsd4_setclientid_confirm() did not check
the return value from get_client_locked(). a SETCLIENTID_CONFIRM could
race with a confirmed client expiring and fail to get a reference. That
could later lead to a UAF.
Fix this by getting a reference early in the case where there is an
extant confirmed client. If that fails then treat it as if there were no
confirmed client found at all.
In the case where the unconfirmed client is expiring, just fail and
return the result from get_client_locked().
π@cveNotify
π¨ CVE-2025-38725
In the Linux kernel, the following vulnerability has been resolved:
net: usb: asix_devices: add phy_mask for ax88772 mdio bus
Without setting phy_mask for ax88772 mdio bus, current driver may create
at most 32 mdio phy devices with phy address range from 0x00 ~ 0x1f.
DLink DUB-E100 H/W Ver B1 is such a device. However, only one main phy
device will bind to net phy driver. This is creating issue during system
suspend/resume since phy_polling_mode() in phy_state_machine() will
directly deference member of phydev->drv for non-main phy devices. Then
NULL pointer dereference issue will occur. Due to only external phy or
internal phy is necessary, add phy_mask for ax88772 mdio bus to workarnoud
the issue.
π@cveNotify
In the Linux kernel, the following vulnerability has been resolved:
net: usb: asix_devices: add phy_mask for ax88772 mdio bus
Without setting phy_mask for ax88772 mdio bus, current driver may create
at most 32 mdio phy devices with phy address range from 0x00 ~ 0x1f.
DLink DUB-E100 H/W Ver B1 is such a device. However, only one main phy
device will bind to net phy driver. This is creating issue during system
suspend/resume since phy_polling_mode() in phy_state_machine() will
directly deference member of phydev->drv for non-main phy devices. Then
NULL pointer dereference issue will occur. Due to only external phy or
internal phy is necessary, add phy_mask for ax88772 mdio bus to workarnoud
the issue.
π@cveNotify
π¨ CVE-2025-21063
Improper access control in Samsung Voice Recorder prior to version 21.5.73.12 in Android 15 and 21.5.81.40 in Android 16 allows physical attackers to access recording files on the lock screen.
π@cveNotify
Improper access control in Samsung Voice Recorder prior to version 21.5.73.12 in Android 15 and 21.5.81.40 in Android 16 allows physical attackers to access recording files on the lock screen.
π@cveNotify
π¨ CVE-2025-11651
A vulnerability has been found in UTT θΏε 518G up to V3v3.2.7-210919-161313. This vulnerability affects the function sub_4247AC of the file /goform/formRemoteControl. The manipulation of the argument Profile leads to buffer overflow. The attack is possible to be carried out remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
π@cveNotify
A vulnerability has been found in UTT θΏε 518G up to V3v3.2.7-210919-161313. This vulnerability affects the function sub_4247AC of the file /goform/formRemoteControl. The manipulation of the argument Profile leads to buffer overflow. The attack is possible to be carried out remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
π@cveNotify
GitHub
cve/13.md at main Β· cymiao1978/cve
Contribute to cymiao1978/cve development by creating an account on GitHub.
π¨ CVE-2025-11652
A vulnerability was found in UTT θΏε 518G up to V3v3.2.7-210919-161313. This issue affects some unknown processing of the file /goform/formTaskEdit_ap. The manipulation of the argument txtMin2 results in buffer overflow. The attack may be performed from remote. The exploit has been made public and could be used. The vendor was contacted early about this disclosure but did not respond in any way.
π@cveNotify
A vulnerability was found in UTT θΏε 518G up to V3v3.2.7-210919-161313. This issue affects some unknown processing of the file /goform/formTaskEdit_ap. The manipulation of the argument txtMin2 results in buffer overflow. The attack may be performed from remote. The exploit has been made public and could be used. The vendor was contacted early about this disclosure but did not respond in any way.
π@cveNotify
GitHub
cve/14.md at main Β· cymiao1978/cve
Contribute to cymiao1978/cve development by creating an account on GitHub.
π¨ CVE-2023-2003
Embedded malicious code vulnerability in Vision1210, in the build 5 of operating system version 4.3, which could allow a remote attacker to store base64-encoded malicious code in the device's data tables via the PCOM protocol, which can then be retrieved by a client and executed on the device.
π@cveNotify
Embedded malicious code vulnerability in Vision1210, in the build 5 of operating system version 4.3, which could allow a remote attacker to store base64-encoded malicious code in the device's data tables via the PCOM protocol, which can then be retrieved by a client and executed on the device.
π@cveNotify
Hackplayers
Vulnerabilidad de cΓ³digo malicioso embebido en Vision1210 de Unitronics
Como parte de una investigaciΓ³n que estaba realizando sobre unos PLCs de Unitronics me encontrΓ© con este modelo V1210 que es PLC y HMI. La ...
π¨ CVE-2024-2904
Cross-Site Request Forgery (CSRF) vulnerability in Extend Themes Calliope.This issue affects Calliope: from n/a through 1.0.33.
π@cveNotify
Cross-Site Request Forgery (CSRF) vulnerability in Extend Themes Calliope.This issue affects Calliope: from n/a through 1.0.33.
π@cveNotify
Patchstack
Cross Site Request Forgery (CSRF) in WordPress Calliope Theme
Patchstack is the leading open source vulnerability research organization. Find information and protection for all WordPress, Drupal and Joomla security issues.