๐—–๐—ฆ ๐—”๐—น๐—ด๐—ผ ๐Ÿ’ป ๐ŸŒ ใ€Ž๐—–๐—ผ๐—บ๐—ฝ๐—ฒ๐˜๐—ถ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐—บ๐—ถ๐—ป๐—ดใ€
9.57K subscribers
5.58K photos
3 videos
95 files
9.96K links
๐ŸšฉMain Group - @SuperExams
๐Ÿ“Job Updates - @FresherEarth

๐Ÿ”ฐAuthentic Coding Solutions(with Outputs)
โš ๏ธDaily Job Updates
โš ๏ธHackathon Updates & Solutions

Buy ads: https://telega.io/c/cs_algo
Download Telegram
Company โ€“ AFIV Data Outsourcing
Role โ€“ Data Analyst Intern
Exp. โ€“ Fresher
Apply Here โ€“ https://www.naukri.com/job-listings-data-analyst-intern-afiv-data-outsourcing-surat-gujarat-0-to-1-years-281223006458?src=jobsearchDesk&sid=17038252627045346_4&xp=1&px=1&nignbevent_src=jobsearchDeskGNB

Company โ€“ Uni Access Consulting
Role โ€“ Intern - Digital Data Analyst
Exp. โ€“ Fresher
Apply Here โ€“ https://www.naukri.com/job-listings-intern-digital-data-analyst-uni-access-pune-0-to-1-years-130923501976?src=jobsearchDesk&sid=17038252627045346_4&xp=3&px=1&nignbevent_src=jobsearchDeskGNB

Company โ€“ Datatrained
Role โ€“ Data Science Intern
Exp. โ€“ Fresher
Apply Here โ€“ https://www.naukri.com/job-listings-data-science-intern-datatrained-noida-bangalore-bengaluru-0-to-2-years-211220501187?src=jobsearchDesk&sid=17038252627045346_5&xp=3&px=1&nignbevent_src=jobsearchDeskGNB


Company โ€“ Relinns
Role โ€“ Data Science Intern
Exp. โ€“ Fresher
Apply Here โ€“ https://www.naukri.com/job-listings-data-science-intern-relinns-technologies-mohali-0-to-1-years-241220502234?src=jobsearchDesk&sid=17038252627045346_5&xp=5&px=1&nignbevent_src=jobsearchDeskGNB

Company โ€“ Mactores Cognition
Role โ€“ Data Engineer ( Intern )
Exp. โ€“ Fresher
Apply Here โ€“ https://www.naukri.com/job-listings-data-engineer-intern-mactores-mumbai-0-to-1-years-250422500633?src=jobsearchDesk&sid=17038252627045346_6&xp=3&px=1&nignbevent_src=jobsearchDeskGNB

Company โ€“ QS Quacquarelli Symonds
Role โ€“ Data Engineer
Exp. โ€“ 0 - 4 years
Apply Here โ€“ https://www.naukri.com/job-listings-data-engineer-quacquarelli-symonds-kolkata-mumbai-new-delhi-hyderabad-secunderabad-pune-chennai-bangalore-bengaluru-0-to-4-years-310523500394?src=jobsearchDesk&sid=17038295007096451&xp=1&px=1
Walk In Interview schedule for Diploma Freshers on 2nd January 2024

Company - Exicom Tele Systems Ltd.

Department - Production-Assembly of Lithium Ion Battery.

Qualification - Diploma in Electrical/Electronics Only
Experience - Fresher to 2 Years

Salary - For fresher 6 months paid internship is compulsory with 10k stipend and for DET 16000/- CTC per month.

Company Address - Plot No-75D, Sector-18, Gurgaon.
Interview Date - 2nd January 2024
Interview Timings - 10:30 AM to 1:30 PM.
Interested Candidates can come for the Interview.
๐Ÿ‘1
SELECT
  category,
  title,
  total_stock
FROM (
  SELECT
    p.category,
    p.title,
    SUM(w.quantity) AS total_stock
  FROM
    products p
  JOIN
    warehouse w ON p.product_id = w.product_id
  GROUP BY
    p.category, p.title
  HAVING
    total_stock > 10
) AS filtered_data
ORDER BY
  category ASC, title ASC, total_stock DESC;

IBMโœ…
โค1๐Ÿ‘1
#include <bits/stdc++.h>
#define ll long long
#define db double
#define fi first
#define se second
#define pb push_back
#define ppb pop_back
#define mk make_pair
#define pll pair<ll,ll>
#define pii pair<int,int>
#define pil pair<int,long long>
#define all(a) a.begin(),a.end()
#define tm template<class dt>
using namespace std;
using vi = vector<int>;
using vl = vector<ll>;
using vb = vector<bool>;
using ull = unsigned long long;
const int MOD = 1e9 + 7;
const db eps = 1e-9;
const db pi = acos(-1.0);
const int iinf = INT_MAX;
const ll inf = LLONG_MAX;
const long double f_inf = FLT_MAX;
#define debug(x) cout << #x << " " << x << "\n";
#define tC(t) for(int ti=1;ti<=t;ti++)
tm dt max_t(const dt &a,const dt &b){return (a>b)?a:b;}
tm dt min_t(const dt &a,const dt &b){return (a>b)?b:a;}
tm void swapx(dt &a,dt &b){a ^= b;b ^= a;a ^= b;}

struct Query{long long w;int u,v,idx;};
const int mxn = 1e5 + 10;
const int mxk = 20;
vi adj[mxn];
int tin[mxn],subt[mxn],lvl[mxn];
int dp[mxn][mxk],idx;

bool cmp(const Query &a,const Query &b){
    if(a.w==b.w)return a.idx==-1;
    else return a.w < b.w;
}

void dfs(int u = 1,int p = -1,int l = 0){
    dp[u][0] = p; tin[u] = idx++;
    subt[u] = 1; lvl[u] = l;
    for(int i=1;i<mxk;i++){
        if(dp[u][i-1]==-1)break;
        dp[u][i] = dp[dp[u][i-1]][i-1];
    }
    for(auto v: adj[u]){
        if(v==p)continue;
        dfs(v,u,l+1);
        subt[u] += subt[v];
    }
}

struct Segtree{
    vl t,lazy;
    Segtree(int N){
        t.assign(4 * N + 10, 0);
        lazy.assign(4 * N + 10, 0);
    }
    void Update(int v,int l,int r,int lb,int ub,ll x){
        if(lazy[v]){
            t[v] += (r - l + 1) * lazy[v];
            if(l!=r){
                lazy[2*v+1] += lazy[v];
                lazy[2*v+2] += lazy[v];
            }
            lazy[v] = 0;
        }
        if(r<lb ub<l ub<lb)return;
        if(l>=lb && r<=ub){
            t[v] += (r - l + 1) * x;
            if(l!=r){
                lazy[2*v+1] += x;
                lazy[2*v+2] += x;
            }
            return;
        }
        int m = l + (r-l)/2;
        Update(2*v+1,l,m,lb,ub,x);
        Update(2*v+2,m+1,r,lb,ub,x);
        t[v] = t[2*v+1] + t[2*v+2];
    }
    long long Query(int v,int l,int r,int index){
        if(lazy[v]){
            t[v] += (r - l + 1) * lazy[v];
            if(l!=r){
                lazy[2*v+1] += lazy[v];
                lazy[2*v+2] += lazy[v];
            }
            lazy[v] = 0;
        }
        if(l==r)return t[v];
        int m = l + (r-l)/2;
        if(index <= m)return Query(2*v+1,l,m,index);
        else return Query(2*v+2,m+1,r,index);
    }
};

int LCA(int a,int b){
    if(lvl[b] > lvl[a])swapx<int>(a,b);
    int dif = lvl[a] - lvl[b];
    for(int i=mxk-1;i>=0;i--){
        if(dif & (1ll<<i))a = dp[a][i];
    }
    if(a==b)return a;
    for(int i=mxk-1;i>=0;i--){
        if(dp[a][i]!=dp[b][i]){
            a = dp[a][i];
            b = dp[b][i];
        }
    }
    return dp[a][0];
}

void Solve(int ti){
    int N;
    cin >> N;
    long long w;
    int a,b;
    vector<Query> Q;
    for(int i=1;i<=N;i++){
        cin >> w;
        Q.pb({w,i,-1,-1});
    }
    for(int i=1;i<N;i++){
        cin >> a >> b;
        adj[a].pb(b);
        adj[b].pb(a);
    }
    int q;
    cin >> q;
    for(int i=0;i<q;i++){
        cin >> a >> b >> w;
        Q.pb({w, a, b, i});
    }
    sort(all(Q),cmp);
    dfs();
    long long C[N+1],R[q];
    memset(C, 0, sizeof(C));
    Segtree st(N);
    int M = Q.size();
    for(int i=0;i<M;i++){
        if(Q[i].idx==-1){
            int u = Q[i].u; C[u] = Q[i].w;
            st.Update(0,0,N-1,tin[u],tin[u]+subt[u]-1,C[u]);
        }else{
            int lca = LCA(Q[i].u,Q[i].v);
            long long Sum = 0;
            Sum += st.Query(0,0,N-1,tin[Q[i].u]);
            Sum += st.Query(0,0,N-1,tin[Q[i].v]);
๐Ÿ‘3
            Sum = Sum - 2 * 1ll * st.Query(0,0,N-1,tin[lca]);
            Sum += C[lca];
            R[Q[i].idx] = Sum;
        }
    }
    for(auto r: R)cout << r << '\n';
}
int main(){
    cin.tie(0)->sync_with_stdio(0);
    memset(dp, -1, sizeof(dp));
    memset(tin, -1, sizeof(tin));
    memset(subt, 0, sizeof(subt));
    idx = 0;

    int t = 1;
    tC(t){
        Solve(ti);
    }
    return 0;
}

Sum of population โœ…
๐Ÿ‘1
Date - 30/12/2023
Company Name - Course i5
Role: Data Scientist

Q.   How can outlier values be treated?


A.  An outlier is an observation in a dataset that differs significantly from the rest of the data. This signifies that an outlier is much larger or smaller than the rest of the data.
Given are some of the methods of treating the outliers: Trimming or removing the outlier, Quantile based flooring and capping, Mean/Median imputation.


Q.   What is root cause analysis?


A.  A root cause is a component that contributed to a nonconformance and should be eradicated permanently through process improvement. The root cause is the most fundamental problemโ€”the most fundamental reasonโ€”that puts in motion the entire cause-and-effect chain that leads to the problem (s). Root cause analysis (RCA) is a word that refers to a variety of approaches, tools, and procedures used to identify the root causes of problems. Some RCA approaches are more directed toward uncovering actual root causes than others, while others are more general problem-solving procedures, and yet others just provide support for the root cause analysis core activity.


Q.  What is bias and variance in Data Science?

A.  The model's simplifying assumptions simplify the target function, making it easier to estimate. Bias is the difference between the Predicted Value and the Expected Value in its most basic form. Variance refers to how much the target function's estimate will fluctuate as a result of varied training data. In contrast to bias, variance occurs when the model takes into account the data's fluctuations, or noise.


Q.  What is a confusion matrix?

A.   A confusion matrix is a method of summarising a classification algorithm's performance. Calculating a confusion matrix can help you understand what your classification model is getting right and where it is going wrong. This gives us the following: "True positive" for event values that were successfully predicted. "False positive" for event values that were mistakenly predicted. For successfully anticipated no-event values, "true negative" is used. "False negative" for no-event values that were mistakenly predicted.

โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”-
๐Ÿ‘2
Happy New Year Everyone! ๐Ÿฅณ

Thanks for believing us, I will try my best to provide every opportunities to you guys, and extremely sorry if I missed out any opportunities in 2023.

Sb milkr OffCampus Phodenge 2024 mei๐Ÿ˜Œโค๏ธโค๏ธ
โค5๐Ÿ‘2