Время Валеры
25.4K subscribers
166 photos
6 videos
1 file
351 links
Мне платят за то, что я говорю другим людям что им делать.
Автор книги https://www.manning.com/books/machine-learning-system-design
https://venheads.io
https://www.linkedin.com/in/venheads
Download Telegram
Прочитал очередную статью на Хабре от Х5 - Эконометрическое моделирование трафика: зачем мы изучали влияние дождя и времени года на посещаемость магазинов

Статья неплохая, раскрывает ряд интересных моментов

Например, что не обязательно держать долю рекламы на рынке относительно конкурентов, достаточно просто иметь определенное количество показов в абсолютах

Или что довольно быстро находится пик ROI, после которого его уменьшение не ведет к увеличению выручки

А так-же что многие коэффициенты могут оказаться не стат значимыми, если на них смотреть под разными углами

В целом неплохая статья/заметка на подумать и осмыслить
Вышло новое видео, где я собеседую выпускника Hard ML и по совместительству Синьора/Лида в онлайн кинотеатре. Формат собеседования - он заранее выбирает проект и рассказывает про него, я задаю вопросы
Неплохая статья от чела, который еще 10 лет назад в блоге нетфликса писал про три типа рекомншадек: Оффлайн, риал-тайм и что-то посередке

Приводит архетипы построения рекомендашек с ссылками(три) и четвертый, покрывающий все предыдущие. Blueprints for recommender system architectures: 10th anniversary edition

1. Eugene Yan’s 2 x 2 blueprint
На мой взгляд базовая шутка - retrieval через эмбединги и ANN -> выбор топ K кандидатов и обогащение их доп признаками -> ранжирование -> результат

2. Nvidia’s 4 stage blueprint
Выглядит скорее как расширенная часть предыдущего
Retrieval (аналогичный предыдущему) -> filtering (через фильтры Блума, то есть очевидно что то совсем поломанное таким правится, но видимо лень чинить эмбединги) -> обогащение данных и Скоринг -> еще один фильтр, поспроцессинг, уже использщуюзий бизнес логику - хотя на мой взгляд это классический пост процессинг, который может быть где угодно


3.Fennel.ai’s 8 stage blueprint
Тоже самое что предыдущие два, только еще показали что нужно сразу закидывать в систему данные сгененированные моделью (клик/не клик на определенные вещи и тп)

Как вы уже поняли все три архетипа это одно и то - же, что же представляет из себя четвертый?

Да тоже самое, но побольше

В целом полезно, чтобы понять что ничего нового не придумали или ознакомиться, если не знали как работают рекомендашки
Обратил внимание что рекрутеры на Linkedin оживились, ощущение что рынок постепенно восстанавливается, за 2 дня - 4 предложения пообщаться

Staff+ (IC6,7,8) Engineer @ Personio!
An applied science manager
to build a team of world-class software engineers and scientists that will deliver on an Amazon-critical charter
[Agoda] Opportunities with our data-driven marketing team
Director of Data opportunity leading entire function for profitable & well funded SaaS Fintech proposition


Выглядит как хороший знак
Как показали события этого дня, иногда, прежде чем работать над AI alignment, стоит удостовериться что между CEO и бордой есть просто alignment
Мне нравится собирать Лего, точнее так, я собираю много Лего и одновременно слушаю аудио книги, попеременно на английском и немецком, что является единственным способом поддерживать немецкий язык на каком-то приличном уровне.

Еще в России я скорешился с коллекционером Лего, который заполнял и заполняет им огромный дом в Подмосковье. Сдружились мы на той теме, что у меня нет огромного дома для Лего, а у него есть и мое Лего через некоторое время становилось его.

Когда он узнал что я уезжаю в ЮК, сказал - ну теперь тебя завалят подарками. Ведь при покупке Лего в официальном магазине - дарят кучу подарков (куда их девал Мир Кубиков - отдельный вопрос) И не обманул!

На фото то, что я получил в качестве подарков за последние 2 года (примерно 3/4, остальное раздарено или собрано)
Победа либертарианца на выборах президента Аргентины может оказаться событием не менее масштабным, чем эпопея вокруг Open AI. Что дальше, Анархо Капиталисты у власти в Бразилии?
Поначала радовался новому умному кольцу Circular - и апка интересная и лидерборд и какие-то награды и данные непрерывным потоком льются. Одно но. Сегодня обнаружил, что мой скор по сну заметно упал, начал смотреть почему. Оказалось, что вчера, оставив кольцо на тумбочке, оно решило что я спал. Получается не очень умное - ведь я не спал. Написал в поддержку, в ответ советуют носить кольцо не снимая и говорят что да, такое может быть.

Такие кольца нам не нужны. А жаль
Но ничего, там новое кольцо вышло - ultrahuman
Прочитал статью LANGUAGE MODELS REPRESENT SPACE AND TIME от пацанов из MIT.

В свое время, концепция создания эмбедингов для слов через word2vec меня поразила, самым ошеломительным было наличие связей между понятиями: страна - столица, глаголы в разных временах и все эти приколы, типа король - мужчина + женщина = королева

Поэтому текущая статья не удивила, ведь это является логичным продолжением того, что наблюдалось еще в word2vec

Что сделали? Собрали 6 датасетов с именами/названиями (людей, мест, событий и тп), с локациями и временными точками
Три пространственных датасета: Мир, США, Нью-Йорк
Три временных датасета: Имена и сфера деятельности известных людей за последние 3000 лет. Имя создателей, название произведения и дата создания для песен, книг и фильмов - 1950 - 2020. Заголовки газеты New-York Times

Берут разные Llama-2 от 7 до 70 млрд параметров, прогоняют каждую сущность через модель и сохраняют активации последнего Хидден стейта на последнем токене и так для каждого слоя . Для каждого слоя получают матрицу активаций размером n(количество сэмплов) x d (размерность модели)

Затем обучают простую линейную модельку, которая на входе получает активации (1 слой - 1 датасет) и таргет (либо время, либо две координаты). Собственно, если на отложенной выборке модель успешно предиктит время и координаты, получается эта информация линейно закодирована в активациях (из этого не следует что изначальная модель использует эти репрезентации, с другой стороны, вряд-ли это вышло случайно). Тоже не открытие, весь deep learning это по факту representational learning и оперирует в конце обычно такими представлениями, чтобы линейная модель справлялась

Эксперименты показали, что с увеличением размера модель, растет качество восстановления и времени и пространственных координат через линейный декодер. Кроме того - качество растет с увеличения слоя (доходя до середины и затем выходя на плато)
Кроме того, это подтверждает linear representation hypothesis, то есть, что фичи внутри слоев нейронных сетей представлены линейно.
Проверили просто, обучили нелинейную модель как декодер - значимого улучшения не обнаружили

Еще решили проверить, что будет если к сэмплу добавлять разные промпты. Как и многое в жизни, лучше не стало, но от некоторых стало заметно хуже. Получается не зря говорят не слушать советов!
Потом проверили стабильность модели - впрочем тут можно прочитать самим, как изверги вытаскивали блоки информации и смотрели как модель может их восстановить. Относительно получалось неплохо, но абсолютно - так себе

Если попробовать ужать размеренность через PCA - качество падает заметно
В конце описывают что смогли найти нейроны, ответственные за время и пространство

В целом, интересно, но не удивительно
Написал я этот пост, чтобы не созваниваться с Игорем (https://t.me/seeallochnaya) и обсуждать статью вживую
#ArticleReview
До чего дошел прогресс.

Судя по всему, на ряде довольно престижных технических конференций организаторы придумывали и анонсировал фейковых докладчиков-женщин. Видимо чтобы адресовать запросы по diversity, кажется это оказалось самым простым решением.

В целом понятно, что проблему нужно решать вверху воронки. Если в технические специальности нанимают в основном людей с техническим образованием, а там соотношение 10-90 или 20-80, с чего бы оно менялось дальше в лучшую сторону ? Скорее изменится в худшую. Поэтому все попытки изменить низ воронки выглядят как мишура, если что и менять, то в начале.
В полет отправился первый в мире трансантлантический самолет, полностью заправленный sustainable aviation fuel. So-called sustainable aviation fuels (SAF) can be made from a variety of sources, including crops, household waste and cooking oils. The first transatlantic flight by a large passenger plane powered only by alternative fuels has taken off.

Топливо, очевидно, сделано и предоставлено компанией BP
Интересно за что она сядет. Пока еще Форбс не ошибался
Один чел на Linkedin, написал что периодически переживает из за потенциально пересекающихся и влияющих друг на друга А/Б тестов

Это конечно ерунда, потому что:
A/B tests are not done blindly, it is very hard to imagine an improvement of 8% that you won't anticipate as a possible outcome of interactions of two new features
The only way I can imagine this is if someone runs thousands of random things without any idea behind them and want to check the results

При этом чел сам ссылается на статью от Microsoft - A/B Interactions: A Call to Relax
Где ровно то-же самое и говорят, пацаны - расслабьтесь, мы за вас уже посмотрели, такая штука практически никогда не возникает

Поэтому не бойтесь пропустить интеракцию всей своей жизни, почитайте лучше заметку Адама C3PO - про сто тысяч аб тестов
Приятно осознавать, глядя на эту картинку, что Х5 решил сконцентрироваться на найме сотрудников-качков.

Рад что мое дело живёт
Live stream scheduled for
Завтра (13 декабря), в 18 по Лондону проведем стрим с @seeallochnaya и инженером из DeepMind, который участвовал в создании Gemini. Обсудим как обычно LLM, будущее и прошлое

Вопросы можно оставлять здесь

Добавить в календарь
Live stream started
Пост для обсуждения Стрима
Live stream finished (1 hour)