Crypto Python
818 subscribers
448 photos
26 files
455 links
Алготрейдинг 🤖 , работа с API бирж и агрегаторов 🌐 , автоматизации в крипто сфере📈 🚀
Ваши предложения📝 @binance_de
Download Telegram
📌Liquidity Gravity Map” - (Карта гравитации ликвидности) 🧑‍💻

💡 Идея: 🧨

Цена на рынке тянется туда, где накапливается ликвидность — лимитные ордера, стопы, зоны плотного объёма.

Инструмент визуализирует “гравитационные центры цены” в реальном времени: где находится основная масса ликвидности и насколько сильно она “тянет” цену.

🧠 Применение: 💸

Определить, куда с большей вероятностью пойдёт цена (в сторону сильной ликвидности).

Найти “магниты цены” — уровни, где часто происходят отскоки или ложные пробои.

Использовать для входа в направлении притяжения или для контр-трейдов от зон концентрации ордеров.

import ccxt
import numpy as np
import time

def liquidity_gravity(symbol="BTC/USDT", depth_limit=100):
exchange = ccxt.binance({'options': {'defaultType': 'future'}})
orderbook = exchange.fetch_order_book(symbol, limit=depth_limit)

bids = np.array(orderbook['bids'])
asks = np.array(orderbook['asks'])
mid_price = (asks[0, 0] + bids[0, 0]) / 2

def gravity_side(side, direction):
g_total = 0
for price, volume in side:
distance = abs(price - mid_price)
if distance == 0:
continue
g_total += volume / (distance ** 2)
if direction == "up":
return g_total, np.average([p for p, _ in side], weights=[v for _, v in side])
else:
return g_total, np.average([p for p, _ in side], weights=[v for _, v in side])

g_bids, bid_center = gravity_side(bids, "up")
g_asks, ask_center = gravity_side(asks, "down")

bias = "UP" if g_bids > g_asks else "DOWN"
gravity_center = (bid_center * g_bids + ask_center * g_asks) / (g_bids + g_asks)

print(f"\n📊 {symbol}")
print(f"Текущая цена: {mid_price:.2f}")
print(f"Центр гравитации: {gravity_center:.2f}")
print(f"Сила гравитации BID: {g_bids:.2f}")
print(f"Сила гравитации ASK: {g_asks:.2f}")
print(f"👉 Преобладание: {bias}")

if __name__ == "__main__":
while True:
try:
liquidity_gravity("BTC/USDT", 100)
time.sleep(5)
except Exception as e:
print("Ошибка:", e)
time.sleep(2)

#инструмент

📌 Подпишись  Crypto Python❗️
🔥5👍4
📌Micro-Rebound Hunter” - (Охотник за микровозвратами) 🧑‍💻

💡 Идея: 🧨

Цена на спотовом рынке Binance часто делает быстрые ложные пробои (wicks) при повышенной волатильности, особенно на младших таймфреймах.

Стратегия ловит локальные микровозвраты после экстремальных свечей, не используя индикаторы.

⚙️ Логика входа: 🛠️

1. Находим свечу, где:

диапазон high - low ≥ X% (например, 0.5%)

цена закрытия находится в нижних 20% диапазона (для лонга)

либо в верхних 20% диапазона (для шорта)

2. Входим в противоположную сторону импульса, если следующая свеча подтверждает слабость (не обновляет экстремум).

3. Тейк фиксированный (например, +0.2%), стоп за экстремумом предыдущей свечи.

import ccxt
import pandas as pd
import time

def micro_rebound_hunter(symbol="BTC/USDT", timeframe="1m", percent_range=0.5, tp=0.25, sl=0.2):
exchange = ccxt.binance()
bars = exchange.fetch_ohlcv(symbol, timeframe=timeframe, limit=200)
df = pd.DataFrame(bars, columns=['time','open','high','low','close','vol'])
df['time'] = pd.to_datetime(df['time'], unit='ms')

last = df.iloc[-1]
prev = df.iloc[-2]
body_range = (last['high'] - last['low']) / last['low'] * 100

if body_range >= percent_range:
# Потенциальный лонг
if last['close'] <= last['low'] + 0.2 * (last['high'] - last['low']):
print(f"🟢 [{symbol}] Потенциальный ЛОНГ на {last['close']}")
print(f"Стоп: {last['low']:.2f}, Тейк: {last['close']*(1+tp/100):.2f}")

# Потенциальный шорт
elif last['close'] >= last['high'] - 0.2 * (last['high'] - last['low']):
print(f"🔴 [{symbol}] Потенциальный ШОРТ на {last['close']}")
print(f"Стоп: {last['high']:.2f}, Тейк: {last['close']*(1-tp/100):.2f}")

# 🔁 Запуск цикла сканера
if __name__ == "__main__":
while True:
try:
micro_rebound_hunter("BTC/USDT")
time.sleep(30)
except Exception as e:
print("Ошибка:", e)
time.sleep(5)

#торговые_стратегии

📌 Подпишись  Crypto Python❗️
👍6🔥41