Coding Interview Resources
50.7K subscribers
703 photos
7 files
402 links
This channel contains the free resources and solution of coding problems which are usually asked in the interviews.

Managed by: @love_data
Download Telegram
Here are some essential data science concepts from A to Z:

A - Algorithm: A set of rules or instructions used to solve a problem or perform a task in data science.

B - Big Data: Large and complex datasets that cannot be easily processed using traditional data processing applications.

C - Clustering: A technique used to group similar data points together based on certain characteristics.

D - Data Cleaning: The process of identifying and correcting errors or inconsistencies in a dataset.

E - Exploratory Data Analysis (EDA): The process of analyzing and visualizing data to understand its underlying patterns and relationships.

F - Feature Engineering: The process of creating new features or variables from existing data to improve model performance.

G - Gradient Descent: An optimization algorithm used to minimize the error of a model by adjusting its parameters.

H - Hypothesis Testing: A statistical technique used to test the validity of a hypothesis or claim based on sample data.

I - Imputation: The process of filling in missing values in a dataset using statistical methods.

J - Joint Probability: The probability of two or more events occurring together.

K - K-Means Clustering: A popular clustering algorithm that partitions data into K clusters based on similarity.

L - Linear Regression: A statistical method used to model the relationship between a dependent variable and one or more independent variables.

M - Machine Learning: A subset of artificial intelligence that uses algorithms to learn patterns and make predictions from data.

N - Normal Distribution: A symmetrical bell-shaped distribution that is commonly used in statistical analysis.

O - Outlier Detection: The process of identifying and removing data points that are significantly different from the rest of the dataset.

P - Precision and Recall: Evaluation metrics used to assess the performance of classification models.

Q - Quantitative Analysis: The process of analyzing numerical data to draw conclusions and make decisions.

R - Random Forest: An ensemble learning algorithm that builds multiple decision trees to improve prediction accuracy.

S - Support Vector Machine (SVM): A supervised learning algorithm used for classification and regression tasks.

T - Time Series Analysis: A statistical technique used to analyze and forecast time-dependent data.

U - Unsupervised Learning: A type of machine learning where the model learns patterns and relationships in data without labeled outputs.

V - Validation Set: A subset of data used to evaluate the performance of a model during training.

W - Web Scraping: The process of extracting data from websites for analysis and visualization.

X - XGBoost: An optimized gradient boosting algorithm that is widely used in machine learning competitions.

Y - Yield Curve Analysis: The study of the relationship between interest rates and the maturity of fixed-income securities.

Z - Z-Score: A standardized score that represents the number of standard deviations a data point is from the mean.

Credits: https://t.me/free4unow_backup

Like if you need similar content 😄👍
4