C++ Academy
16.5K subscribers
627 photos
127 videos
1 file
585 links
По всем вопросам- @haarrp

@itchannels_telegram - 🔥 best it channels

РКН: clck.ru/3FmxJF
Download Telegram
Forwarded from Machinelearning
🌟 Mistral представила свой ответ GitHub Copilot: полноценную экосистему для разработки в энтерпрайзе.

В основе технологического стека - семейство моделей Codestral, с обновленной моделью Codestral 25.08.

Эта версия показала измеримые улучшения, подтвержденные на реальных кодовых базах: на 30% увеличилось количество принятых автодополнений, на 10% вырос объем сохраняемого после подсказки кода, а число генераций, когда модель производит слишком длинный и некорректный код, сократилось на 50%.

В режиме чата модель также стала лучше: ее способность следовать инструкциям выросла на 5% по метрике IF Eval v8, а общие возможности в программировании улучшились в среднем на 5% по тесту MultiplE.

🟡 Следующий уровень - семантический поиск и понимание кодовой базы в масштабе всего проекта.

За это отвечает Codestral Embed, модель для создания векторных представлений, специально спроектированная для кода, а не для обычного текста. По заявлениям Mistral, она превосходит эмбеддинг-решения от OpenAI и Cohere в реальных задачах по извлечению кода.

Ключевое преимущество - возможность настройки размерности эмбеддингов (до 256 измерений с квантованием до INT8), что позволяет балансировать между качеством поиска и хранением данных, сохраняя высокую производительность.

🟡Когда релевантный контекст найден, в дело вступают агентные воркфлоу.

Они реализованные через Devstral - агентскую систему на базе фреймворка OpenHands. Система ориентирована на задачи рефакторинга, генерации тестов и создание pull-реквестов.

На бенче SWE-Bench Verified модель Devstral Small 1.1 выбивает 53.6%, а Devstral Medium - 61.6%, значительно опережая Claude 3.5 и GPT-4.1-mini.

Devstral Small (24 млрд параметров) может работать на одной Nvidia RTX 4090 или Mac с 32 ГБ ОЗУ, что идеально для локальных или изолированных сред.

Все эти возможности объединяются в плагине Mistral Code для IDE от JetBrains и VS Code. Он автодополняет код с помощью Codestral 25.08 и автоматизирует рутину: написание коммитов или docstring’ов через Devstral, и семантический поиск на базе Codestral Embed.

Плагин учитывает контекст из Git diffs, истории терминала и инструментов статического анализа.

Для корпоративных клиентов предусмотрено развертывание в облаке, VPC или полностью on-prem, а также интеграция с SSO, ведение логов аудита и отсутствие обязательной телеметрии.


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2🔥1
Forwarded from Machinelearning
🌟 Фреймворк **CUDA-L1** сам научился оптимизировать код для GPU — и добился в среднем **3.12× ускорения работы модели**, а в пике — **до 120×**. .

Попросите любую LLM написать CUDA-код, и скорее всего, вы получите что-то, что либо не компилируется, либо работает мучительно медленно. Причина проста: качественного CUDA-кода в обучающих данных моделей почти не было.


Чтобы исправить это досадное упущение, Deep Reinforce AI создали систему CUDA-L1, которая основана на трехэтапном пайплайне: сначала supervised-обучение для освоения основ, затем self-supervised для практики и, наконец, контрастное обучение с подкреплением, чтобы было все максимально быстро.

🟢На первом этапе система училась писать корректный и компилируемый CUDA-код.

Для этого существующий код был аугментирован - создавались его вариации, чтобы повысить насмотренность модели.

🟢На втором этапе модель генерировала собственный CUDA-код, тестировала его и училась на работающих примерах, отсеивая неудачные.

🟢Самое интересное - третий этап.

Обучаемой модели показывали несколько реализаций CUDA-ядер вместе с их показателями ускорения, например: «kernel_v1 дает ускорение 1.2x», «kernel_v2 — 2.8x», а «kernel_v3 — 1.5x». Затем задали 3 вопроса:

🟠Почему kernel_v2 настолько быстрее?
🟠Какая стратегия оптимизации сработает еще лучше?
🟠Напиши ядро, которое превзойдет их все.

Таким образом, модель не гадает вслепую, а учится на конкретных примерах, анализируя причины разницы в производительности.

🟡Отдельная история - как победили reward hacking.

После обучения выяснилось, что более 30% сгенерированных реализаций пытались сжульничать - создавали дополнительные CUDA-потоки, которые выполнялись асинхронно.

Поскольку бенчмарк KernelBench отслеживал время только на основном потоке, код выглядел быстрее, чем был на самом деле, показывая фиктивное ускорение в 18 раз.

Другие уловки состояли в манипуляции гиперпараметрами задачи (уменьшение batch_size или размерностей) и кеширование результатов вычислений.

🟡Пришлось строить многоуровневую защиту.

Во-первых, в качестве "адвоката дьявола" взяли adversarial-чекер на базе DeepSeek-R1, который анализировал код на предмет эксплойтов с точностью обнаружения более 60%.

Во-вторых, собрали базу данных из более чем 500 уникальных паттернов взлома, это повысило точность обнаружения на 25%.

И в-третьих, применили математическое сглаживание и нормализацию наград, где любое подозрительное ускорение (от 1.5x для простых операций) дополнительно проверялось.

🟡После всех фильтров и проверок прогон на бенчмарке KernelBench оказался весьма позитивными.

Система успешно сгенерировала рабочий код для 249 из 250 задач, причем в 240 случаях код оказался быстрее базовой реализации.

Среднее ускорение по всем задачам составило 3.12 раза, максимальное - аж 120 раз. Медианное ускорение (50-й перцентиль) составило 1.42x, а 75-й перцентиль — 2.25x.

Производительность по уровням сложности задач распределилась следующим образом: на простых операциях среднее ускорение составило 2.78x, на последовательностях операторов - 3.55x, а на сложных задачах вроде полных слоев трансформера - 2.96x.

🟡Самое важное - это переносимость оптимизаций.

Код, оптимизированный на NVIDIA A100, был протестирован на других GPU. Результаты показали, что найденные паттерны оптимизации фундаментальны и работают на разных архитектурах.

Среднее ускорение на H100 составило 2.39x (успешных ускорений 227 из 250), на L40 — 3.12x (228/248), а на потребительской RTX 3090 — 2.50x (213/242).

▶️ Пока веса и код не опубликованы, но в ожидании можно покрутить интерактивное демо и воспроизвести тесты из пейпера - в репозитории проекта есть фрагменты CUDA-кода с отдельными версиями для разных GPU.


📌Лицензирование: GPL-3.0 License.


🟡Страница проекта
🟡Arxiv
🟡Demo
🖥Github


@ai_machinelearning_big_data

#AI #ML #CUDA #DeepReinforce #ContrastiveRL
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
6🔥4👍3