Forwarded from Machinelearning
Группа инженеров из Google DeepMind опубликовали 12-ю главу своего он-лайн учебника "How to Scale Your Model: A Systems View of LLMs on TPUs"
How to Scale Your Model - практико-ориентированное руководство по масштабированию LLM из 12 разделов для разработчиков и исследователей. Оно объясняет, как анализировать и оптимизировать производительность модели, учитывая системные ресурсы: вычисления, память и пропускную способность.
Пособие научит выбирать оптимальные стратегии параллелизма, оценивать стоимость и время обучения и инференса, а также глубже понять взаимодействие между TPU/GPU и алгоритмами масштабирования как на одном, так и на тысячах ускорителей.
12-я глава - глубокое техническое руководство по архитектуре GPU и стратегиям масштабирования больших моделей. В ней детально разбирается устройство современных GPU NVIDIA: Streaming Multiprocessors, Tensor Cores, иерархия памяти (HBM, L2, SMEM), все это с подробными сравнительными таблицами характеристик для разных поколений чипов.
Очень подробно выполнено сравнение архитектур GPU и TPU, с объясняем ключевого различия между модульностью GPU и монолитностью TPU.
Особое внимание, что редкость для обучающих материалов, уделено сетевой организации кластеров. Авторы доступно объясняют как GPU соединяются внутри узлов через NVLink/NVSwitch и между узлами через InfiniBand в топологии "Fat tree", и как пропускная способность на каждом уровне влияет на реальную производительность коллективных операций (AllReduce, AllGather).
Описаны основные стратегии параллелизма: Data Parallelism, Tensor Parallelism, Expert Parallelism и Pipeline Parallelism, с разбором их ограничений и примеров из реальных проектов.
В конце главы есть хороший анализ новых возможностей архитектуры Blackwell.
@ai_machinelearning_big_data
#AI #ML #LLM #Scaling #GPU #TPU
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤3❤🔥1🔥1