@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
AI File Sorter — это универсальное приложение, которое автоматически упорядочивает файлы благодаря использованию технологий искусственного интеллекта. Оно сортирует файлы и папки по названиям и расширениям, позволяя предварительно просматривать и редактировать категории перед их применением. Среди ключевых возможностей программы выделяются интеграция с ChatGPT API для классификации данных, гибкая настройка правил сортировки, удобный интерфейс и совместимость с операционными системами Windows, macOS и Linux.
▪ Github
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
⚡️ LLM4Decompile – это открытая большая языковая модель, предназначенная для декомпиляции бинарного кода в удобочитаемый исходный код.
В текущей версии она способна преобразовывать двоичные файлы Linux x86_64, скомпилированные с уровнями оптимизации GCC от O0 до O3, обратно в человеко-читаемый код на языке C.
Проект также ставит перед собой цель расширения поддержки различных архитектур и языков программирования.
Все материалы проекта доступны на Hugging Face под лицензией MIT и DeepSeek.
🟡 Github
🟡 Models
🟡 Paper
🟡 Colab
@ai_machinelearning_big_data
#llm #ml #ai #opensource #LLM4Decompile
#reverseengineering #decompile
В текущей версии она способна преобразовывать двоичные файлы Linux x86_64, скомпилированные с уровнями оптимизации GCC от O0 до O3, обратно в человеко-читаемый код на языке C.
Проект также ставит перед собой цель расширения поддержки различных архитектур и языков программирования.
Все материалы проекта доступны на Hugging Face под лицензией MIT и DeepSeek.
git clone https://github.com/albertan017/LLM4Decompile.git
cd LLM4Decompile
conda create -n 'llm4decompile' python=3.9 -y
conda activate llm4decompile
pip install -r requirements.txt
@ai_machinelearning_big_data
#llm #ml #ai #opensource #LLM4Decompile
#reverseengineering #decompile
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
#курс #cpp
freecourses
Please open Telegram to view this post
VIEW IN TELEGRAM
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
Что внутри и как работает:
• Практические примеры: Код демонстрирует различные техники работы с CUDA, начиная с базовых примеров и заканчивая более сложными алгоритмами для параллельных вычислений.
• Реализация на CUDA: Примеры написаны с использованием C/C++ и CUDA-расширений, что позволяет увидеть, как правильно организовывать код для выполнения задач на GPU.
• Инструкции по сборке: В репозитории, как правило, присутствуют инструкции по компиляции с помощью NVCC и запуску примеров, что упрощает изучение и практическое применение технологий.
Чем полезен для специалистов:
• Это отличный ресурс для изучения принципов работы GPU и оптимизации вычислительных задач.
• Примеры помогут разобраться в особенностях параллельного программирования и эффективного использования вычислительных ресурсов NVIDIA.
• Подходит как для новичков, так и для опытных разработчиков, желающих улучшить навыки в области высокопроизводительных вычислений.
Репозиторий станет незаменимым помощником для тех, кто хочет погрузиться в мир CUDA и освоить передовые методы ускорения вычислений на графических процессорах.
git clone https://github.com/Maharshi-Pandya/cudacodes.git
▪ Github
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
Valve выпустила исходный код набора инструментов "Source SDK 2013", который предназначен для создания модификаций к играм, работающим на движке Source.
Особенность публикации заключается в том, что в состав пакета включён исходный код таких игр, как Half-Life 2, Half-Life 2: Deathmatch и Team Fortress 2.
Поддерживается компиляция как под Linux, так и под Windows.
Код распространяется под лицензией SOURCE 1 SDK, которая позволяет использовать, копировать и модифицировать код, при условии, что результат будет распространяться бесплатно и не нарушать правила сервиса Steam.
▪ Github
▪ Docs
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM
@cpluspluc
Please open Telegram to view this post
VIEW IN TELEGRAM