Continuous Learning_Startup & Investment
2.43K subscribers
513 photos
5 videos
16 files
2.74K links
We journey together through the captivating realms of entrepreneurship, investment, life, and technology. This is my chronicle of exploration, where I capture and share the lessons that shape our world. Join us and let's never stop learning!
Download Telegram
Data Freshness in Machine Learning Systems.
When it comes to Machine Learning Systems, we usually plug in on top of Data Engineering Systems where data is already collected, transformed and curated for efficient usage in downstream systems - ML System is just one of them. This does not mean however that no additional data transformations need to happen after data is handed over. We refer to Data Freshness in Machine Learning Systems as Feature Freshness.
When thinking about composition of how data is served to the end user in ML Systems there are two mostly independent pieces, hence also two perspectives on
Feature Freshness:
Feature Freshness at Model Training time: how much time does it take for a generated data point to be included when training a Machine Learning Model which is then deployed to serve the end user. Remember that Machine Learning models are nothing more than Statistical models trained to predict certain outcomes on a given feature distribution. We canโ€™t avoid ML Models becoming stale if not retrained. This phenomenon of ML models becoming stale is called Feature and Concept Drift (you can read more about them here).
Feature Freshness at inference time: how much time does it take for a generated data point to be available when performing Inference with the previously trained and deployed model. Features used for inference are usually decoupled in terms of freshness from the ones that are used while training the model and are less stale.
๐Ÿฅ‡Top ML Papers of the Week

How Language Models Use Long Contexts

- finds that LM performance is often highest when relevant information occurs at the beginning or end of the input context; performance degrades when relevant information is provided in the middle of a long context. ([paper](https://substack.com/redirect/4e6b797d-9aed-4940-88c7-3af5b63e4f20?j=eyJ1IjoiMWRheDAifQ.YVDAzsk3G87vydkjsTF3WruaemlL7xgZ83byJs8O8dI)|[tweet](https://substack.com/redirect/3a9b6a9f-fc9e-40a0-b172-f779c899bacf?j=eyJ1IjoiMWRheDAifQ.YVDAzsk3G87vydkjsTF3WruaemlL7xgZ83byJs8O8dI))

LLMs as Effective Text Rankers

- proposes a prompting technique that enables open-source LLMs to perform state-of-the-art text ranking on standard benchmarks. ([paper](https://substack.com/redirect/7782bdfe-6f9c-4c37-87da-f353da8a7a7f?j=eyJ1IjoiMWRheDAifQ.YVDAzsk3G87vydkjsTF3WruaemlL7xgZ83byJs8O8dI)|[tweet](https://substack.com/redirect/dfbde4a7-b3ae-4df2-ac6d-8283361c3ad3?j=eyJ1IjoiMWRheDAifQ.YVDAzsk3G87vydkjsTF3WruaemlL7xgZ83byJs8O8dI))

Multimodal Generation with Frozen LLMs

- introduces an approach that effectively maps images to the token space of LLMs; enables models like PaLM and GPT-4 to tackle visual tasks without parameter updates; enables multimodal tasks and uses in-context learning to tackle various visual tasks. ([paper](https://substack.com/redirect/8377a115-b5c0-4a05-80c3-821099b7ccbf?j=eyJ1IjoiMWRheDAifQ.YVDAzsk3G87vydkjsTF3WruaemlL7xgZ83byJs8O8dI)|[tweet](https://substack.com/redirect/56122f84-fd95-4fb3-bc68-2239ef4ba411?j=eyJ1IjoiMWRheDAifQ.YVDAzsk3G87vydkjsTF3WruaemlL7xgZ83byJs8O8dI))

Elastic Decision Transformer

- introduces an advancement over Decision Transformers and variants by facilitating trajectory stitching during action inference at test time, achieved by adjusting to shorter history that allows transitions to diverse and better future states. ([paper](https://substack.com/redirect/2b1b7dcb-4143-465f-9cd4-aba578c73279?j=eyJ1IjoiMWRheDAifQ.YVDAzsk3G87vydkjsTF3WruaemlL7xgZ83byJs8O8dI)|[tweet](https://substack.com/redirect/adc07e2e-3c86-423c-aa6b-6e4ab3ed2a0a?j=eyJ1IjoiMWRheDAifQ.YVDAzsk3G87vydkjsTF3WruaemlL7xgZ83byJs8O8dI))

Physics-based Motion Retargeting in Real-Time

- proposes a method that uses reinforcement learning to train a policy to control characters in a physics simulator; it retargets motions in real-time from sparse human sensor data to characters of various morphologies. ([paper](https://substack.com/redirect/d7cf6278-7ebf-42f2-9d21-6f598e29cd1e?j=eyJ1IjoiMWRheDAifQ.YVDAzsk3G87vydkjsTF3WruaemlL7xgZ83byJs8O8dI)|[tweet](https://substack.com/redirect/88b736f9-b052-4aa4-be5a-697533fa2d94?j=eyJ1IjoiMWRheDAifQ.YVDAzsk3G87vydkjsTF3WruaemlL7xgZ83byJs8O8dI))

InterCode

- introduces a framework of interactive coding as a reinforcement learning environment; this is different from the typical coding benchmarks that consider a static sequence-to-sequence process. ([paper](https://substack.com/redirect/48889a92-d287-4fd2-87e0-3b72f395c3ed?j=eyJ1IjoiMWRheDAifQ.YVDAzsk3G87vydkjsTF3WruaemlL7xgZ83byJs8O8dI)|[tweet](https://substack.com/redirect/e4f3aeb7-b2d3-49a9-9b32-9d0a842dd7f4?j=eyJ1IjoiMWRheDAifQ.YVDAzsk3G87vydkjsTF3WruaemlL7xgZ83byJs8O8dI))
https://github.com/0hq/tinyvector
SQLite + Python(Flask) + Numpy ๋กœ ๊ตฌ์„ฑ
500๋ผ์ธ๋„ ์•ˆ๋˜๋Š” ์ฝ”๋“œ๋กœ ์‰ฝ๊ฒŒ ์ปค์Šคํ„ฐ๋งˆ์ด์ง• ๊ฐ€๋Šฅ
์ค‘/์†Œ๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹์—์„œ ๊ณ ๊ธ‰ ๋ฒกํ„ฐ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋“ค๊ณผ ๋น„์Šทํ•œ ์„ฑ๋Šฅ
๋ชจ๋“  ์ธ๋ฑ์Šค๋ฅผ ๋ฉ”๋ชจ๋ฆฌ์— ์ €์žฅํ•ด์„œ ๋น ๋ฅด๊ฒŒ ์ฟผ๋ฆฌ ๊ฐ€๋Šฅ
๊ณง ์ถ”๊ฐ€๋  ๊ธฐ๋Šฅ๋“ค
๊ฐ•๋ ฅํ•œ ์ฟผ๋ฆฌ(SQL ๊ธฐ๋Šฅ ๋ชจ๋‘ ์ง€์›)
๋ชจ๋ธ๊ณผ ํ†ตํ•ฉ(SBert, Hugging Face models, OpenAI, Cohere,..)
Python/JS ํด๋ผ์ด์–ธํŠธ
Forwarded from ์š”์ฆ˜AI
๐Ÿ“Œ AI ์‚ฐ์—…์˜ ๋น„์ฆˆ๋‹ˆ์Šค ๊ธฐํšŒ๋Š” ์–ด๋””?

2022๋…„ 11์›” 30์ผ ChatGPT์˜ ๋“ฑ์žฅ์œผ๋กœ AI์‚ฐ์—…์ด ์ฒซ ์ „ํ™˜์ ์— ๋„๋‹ฌํ•˜๊ณ  ๋Œ€๋žต 7๊ฐœ์›”์ด ์ง€๋‚ฌ์Šต๋‹ˆ๋‹ค.

์ผ์„ ์—์„œ๋Š” ์„œ์„œํžˆ ๋‘ ๋ฒˆ์งธ ๋ฌผ๊ฒฐ์ด ์‹œ์ž‘๋˜๊ณ  ์žˆ๋Š” ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.

AI ์œ ๋‹ˆ์ฝ˜ ๊ธฐ์—…์ธ Cohere(์•ฝ $2B ๊ธฐ์—… ๊ฐ€์น˜)๋Š” AI ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ์— ๋Œ€ํ•ด 3๋‹จ๊ณ„(3 phase)๋กœ ๋‚˜๋ˆ„์–ด ์ด ๋ฌผ๊ฒฐ์„ ์„ค๋ช…ํ–ˆ์Šต๋‹ˆ๋‹ค :


Phase 1 : ํ˜„์žฌ ์‹œ์ ์˜ ๋‹จ๊ณ„.
๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ(LLM)์ด ์ „๋ฐ˜์ ์œผ๋กœ ํ•™์Šต ๋ฐ ๋ฐฐํฌ๋˜๋Š” ๋‹จ๊ณ„๋กœ, ์‚ฌ์šฉ์ž๋Š” ChatGPT์™€ ๊ฐ™์€ ํ”„๋ก ํŠธ์—”๋“œ(front-end) ๋„๊ตฌ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ…์ŠคํŠธ์˜ ๊ตฌ์ƒ, ์ž‘์„ฑ, ๊ฐœ์„ ์— ๋„์›€์„ ๋ฐ›์Œ. ๊ธฐ์—…์˜ ์ž์ฒด ๋ฐ์ดํ„ฐ์˜ ์‚ฌ์šฉ์€ ๊ฑฐ์˜ ์ผ์–ด๋‚˜์ง€ ์•Š๋Š” ์ดˆ๊ธฐ ๋‹จ๊ณ„.

Phase 2 : ๊ฒ€์ƒ‰ ์ฆ๊ฐ• ์ƒ์„ฑ((Retrieval Augmented generation, RAG)์„ ํ™œ์šฉํ•˜๋Š” ๋‹จ๊ณ„.
LLM์ด ๊ธฐ์—… ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์ ‘๊ทผ ๊ถŒํ•œ์„ ๊ฐ–๊ฒŒ ๋˜๋Š” ๋‹จ๊ณ„๋กœ, ์ฑ—๋ด‡๊ณผ ๊ฐ™์€ ํ˜•ํƒœ๋กœ ์–ธ์–ด ๋ชจ๋ธ๊ณผ ์ƒํ˜ธ์ž‘์šฉ ํ•  ์ˆ˜ ์žˆ์Œ.
๋ง ๊ทธ๋Œ€๋กœ ์‚ฌ๋žŒ์ด ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฑฐ์˜ ๋ชจ๋“  ์ž‘์—…์„ ํšจ์œจ์ ์œผ๋กœ ๊ฒ€์ƒ‰, ์ข…ํ•ฉ, ๋ณด๊ณ ํ•  ์ˆ˜ ์žˆ๋Š” ์ง€์‹ ๋„์šฐ๋ฏธ(Knowledge Assistant, KA) ์—ญํ• .
์˜ˆ์‹œ : ๐Ÿ‘ฉ๐Ÿป "์Šคํฌ๋žœํ„ด ์ง€์‚ฌ์˜ ์ตœ๊ทผ ๋ณด๊ณ ์„œ 5๊ฐœ๋ฅผ ์š”์•ฝํ•˜๊ณ  ์ตœ๊ณ ์˜ ์˜์—… ์‚ฌ์›์„ ์ฐพ์•„์ค˜.", "๋งค์ถœ ๊ธฐ์ค€ ์ƒ์œ„ 5๊ฐœ ์ œํ’ˆ ์ค‘ ์ด ๋งˆ์ง„์ด ๊ฐ€์žฅ ๋†’์€ ์ œํ’ˆ์ด ๋ญ์•ผ?"

Phase 3 : ์ง€์‹ ๋„์šฐ๋ฏธ(Knowledge Assistant, KA)๊ฐ€ ์ž‘์—…์ž๋ฅผ ๋Œ€์‹ ํ•˜์—ฌ ์กฐ์น˜๋ฅผ ์ทจํ•  ์ˆ˜ ์žˆ๋Š” ๋‹จ๊ณ„.
์ง€์‹ ๋„์šฐ๋ฏธ๊ฐ€ ๊ธฐ์—…์˜ ์‹œ์Šคํ…œ๊ณผ ์ง€๋Šฅ์ ์ด๋ฉด์„œ ์•ˆ์ •์ ์œผ๋กœ ์ƒํ˜ธ ์ž‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋‹จ๊ณ„๋กœ, ์‹ค์ œ ์ž‘์—…์˜ โ€˜์‹คํ–‰โ€™๊นŒ์ง€ ๋งก์•„์„œ ํ•  ์ˆ˜ ์žˆ์Œ. ํ•„์š”ํ•œ ๊ธฐ์—…์˜ ์‹œ์Šคํ…œ๊ณผ ์ธํ„ฐํŽ˜์ด์Šค์˜ ๋‹ค์–‘์„ฑ์„ ๊ณ ๋ คํ•  ๋•Œ ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฌ๊ฒ ์ง€๋งŒ, ์–ธ์–ด ๋ชจ๋ธ์ด ํ•„์š”ํ•œ ํ˜•์‹์„ ๋น„๊ต์  ๋น ๋ฅด๊ฒŒ ์ƒ์„ฑํ•˜๊ณ  ์ดํ•ดํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ.
์˜ˆ์‹œ : ๐Ÿ‘จ๐Ÿป "์‹œ๋ผํ์Šค ์ง€์ ์—์„œ 80ํŒŒ์šด๋“œ ์žฌ๊ณ  500๋ฌถ์Œ๊ณผ ์†ก์žฅ์„ ํ• ์ธ ์—†์ด ๋ณด๋‚ด์ค˜.โ€


๊ธฐ์ˆ ์˜ ๋ฐœ์ „์€ ํ•ญ์ƒ ์ƒˆ๋กœ์šด ํ˜์‹ ์„ ์•ผ๊ธฐํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋ฐ”์ผ ์ธํ„ฐํŽ˜์ด์Šค์˜ ๋ฐœ์ „(Phase 1)์ด ์ˆ˜๋งŽ์€ ๋ผ์ดํ”„ ์Šคํƒ€์ผ์„ ํ˜์‹ (Phase 2, 3)ํ•œ ๊ฒƒ์ฒ˜๋Ÿผ, AI ์‚ฐ์—…๋„ ์ด์™€ ๋น„์Šทํ•œ ์–‘์ƒ์„ ๋จ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.

์ƒ˜ ์•ŒํŠธ๋งŒ์€ GPT ๋ชจ๋ธ์ด ๋ฐฉ๋Œ€ํ•œ ์ง€์‹ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๊ฐ€ ์•„๋‹Œ ์ถ”๋ก  ์—”์ง„์ด๋ผ๋Š” ์ ์„ ๊ฐ•์กฐํ•œ ๋ฐ” ์žˆ์Šต๋‹ˆ๋‹ค. Phase 1์€ ์ด์™€ ๊ฐ™์€ ๊ฐ•๋ ฅํ•œ ์ถ”๋ก  ๋ชจ๋ธ์ด ๋งŒ๋“ค์–ด์ง„ ๋‹จ๊ณ„๊ฐ€ ์•„๋‹ˆ์—ˆ๋‚˜ ์‹ถ์Šต๋‹ˆ๋‹ค.

์ด์ œ๋Š” ๊ฐ•๋ ฅํ•œ ์ถ”๋ก  ๋ชจ๋ธ์ด ์ตœ์ ์˜ ๋‹ต๋ณ€์„ ๋งŒ๋“ค์–ด๋‚ด๊ธฐ ์œ„ํ•œ ์ •์ œ๋œ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”ํ•  ๋•Œ์ธ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ๊ธฐ์—…์˜ ๊ณ ์œ ํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ฐ”๋กœ ์ด ์ •์ œ๋œ ๋ฐ์ดํ„ฐ์˜ ์—ญํ• ์„ ํ•˜๊ฒŒ ๋  ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ๊ธฐ์—…์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ์˜ ์˜์—ญ์€ AI ๊ธฐ์ˆ ์—๊ฒŒ๋Š” ์ตœ์ ์˜ ์‹œ์žฅ์ด๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .

๋”ฐ๋ผ์„œ ์ด์ œ๋Š” ๊ธฐ์—…์ด ์ž์ฒด ๋ฐ์ดํ„ฐ๋ฅผ ์ž˜ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” AI ์„œ๋น„์Šค๋Š” ๋ฌด์—‡์ผ์ง€, ๊ทธ ํ˜•ํƒœ๋Š” ์–ด๋–จ์ง€ ๊ณ ๋ฏผ์„ ํ•ด๋ด์•ผ ํ•  ๋•Œ์ธ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.

์•„๋งˆ ์ด ๋‹จ๊ณ„์—์„œ๋Š” ๊ธฐ์กด์˜ ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค์™€๋Š” ์ „ํ˜€ ๋‹ค๋ฅธ ํ˜•ํƒœ๋กœ ์ „ํ™˜๋  ๊ฐ€๋Šฅ์„ฑ๋„ ์žˆ์„ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์ฐฝ์˜๋ ฅ์ด ํ•„์š”ํ•œ ์‹œ๊ธฐ ๊ฐ™๋„ค์š”.


โœ”๏ธ Cohere์˜ โ€˜How Generative AI and LLMs Unlock Greator Workforce Productivityโ€™๋ผ๋Š” ๊ธ€์„ ์ฐธ๊ณ ํ–ˆ์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—์„œ ์›๋ฌธ์„ ์˜์—ญํ•œ ๊ธ€์„ ์ฝ์œผ์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์š”์ฆ˜AI๊ฐ€ ๋‹ด์€ ๋‚ด์šฉ ์™ธ์—๋„ ์ข‹์€ ๋‚ด์šฉ์ด ๋งŽ์œผ๋‹ˆ ํ•œ ๋ฒˆ์”ฉ ์ฝ์–ด๋ณด์‹œ๋ฉด ์ข‹์„ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.
Everyone will be able to code using English. The methods we use to learn programming and develop software are set to undergo a radical transformation in the upcoming months.


https://chat.openai.com/share/5689e899-673b-469f-af85-977b03c9e825
Academia is in for a wild ride

>Upload census data & data dictionary into GPT with Code Interpreter
>"I would like you to generate some interesting draft hypotheses about industries & MSAs and then to test them with the data. make assumptions if you need to"
>"Put it in a paper"
<๋…ผ๋ฌธ ์‰ฝ๊ฒŒ ๋ณด์„ธ์š”>

AI ๊ด€๋ จ, ๋…ผ๋ฌธ์œผ๋กœ ๊ณต๋ถ€๋ฅผ ํ•˜๋ฉด์„œ ์•„์ง ์ง€์‹์ด ์ผ์ฒœํ•˜์—ฌ ๋ฌด์Šจ๋ง์ธ์ง€ ๋‹น์ตœ ์ดํ•ด๊ฐ€ ๋˜์ง€ ์•Š์„๋•Œ๊ฐ€ ๋งŽ๋‹ค.
์ด๋•Œ chatGPT์˜ ํ”Œ๋Ÿฌ๊ทธ์ธ๋“ค์„ ์กฐํ•ฉํ•ด์„œ ๋ชจ๋ฅด๋Š” ์ˆ˜์‹์˜ ์˜๋ฏธ๋ฅผ ์•Œ์•„๋‚ผ ์ˆ˜ ์žˆ๋Š”๋ฐ, ํ˜น์‹œ๋‚˜ ๋ชจ๋ฅด๊ณ  ๊ณ„์‹ ๋ถ„๋“ค์—๊ฒŒ ๋„์›€์ด ๋ ๊นŒ ํ•˜์—ฌ ํฌ์ŠคํŒ…ํ•ด๋ณธ๋‹ค.

chatGPT ํ”Œ๋Ÿฌ๊ทธ์ธ์€ 3๊ฐœ๊นŒ์ง€ ํ•œ๊บผ๋ฒˆ์— ์กฐํ•ฉํ•ด์„œ ์“ธ ์ˆ˜ ์žˆ๋Š”๋ฐ ์šฐ์„  ์•„๋ž˜์˜ 3๊ฐœ๋ฅผ ์„ค์น˜ํ•œ๋‹ค.

1. LinkReader: chatGPT์— ๋ถ™์—ฌ๋„ฃ๊ธฐํ•œ ์ฃผ์†Œ์˜ pdf์—์„œ ํ…์ŠคํŠธ๋‚˜ ๊ทธ๋ฆผ์„ ๊ฐ€์ ธ์˜จ๋‹ค.
2. AskYourPDF: PDFํŒŒ์ผ์„ ๋ถ„์„ํ•ด์คŒ. ์งˆ๋ฌธ์„ ํ•˜๊ฑฐ๋‚˜ ์š”์•ฝ์„ ์š”์ฒญํ•  ์ˆ˜ ์žˆ๋‹ค.
3. WolframAlpha: ๋…ผ๋ฌธ ์† ์ˆ˜์‹์„ Latex๋กœ ์˜ฎ๊ฒจ์„œ ์˜๋ฏธ๋ฅผ ํ•ด์„ํ•˜๊ณ  ๊ทธ๋ž˜ํ”„๋กœ ๊ทธ๋ ค์คŒ

์ด๋ ‡๊ฒŒ 3๊ฐœ๋ฅผ ์„ค์น˜ ํ›„ ์ฒดํฌ๋ฐ•์Šค๋ฅผ ์ฒดํฌํ•˜์—ฌ ํ™œ์„ฑํ™” ํ•œ ๋‹ค์Œ chatGPT์— ํ•ด๋‹น ๋…ผ๋ฌธ์˜ pdf ์ฃผ์†Œ์™€ ๊ฐ™์ด ํ•„์š”ํ•œ ์งˆ๋ฌธ์„ ํ•˜๋ฉด ๋œ๋‹ค.

์˜ˆ๋ฅผ๋“ค์–ด ํŠธ๋žœ์Šคํฌ๋จธ ๋…ผ๋ฌธ์ธ 'Attention Is All You Need'์—์„œ ๊ถ๊ธˆ์ฆ์ด ์žˆ๋‹ค๋ฉด ์•„๋ž˜์™€ ๊ฐ™์ด chatGPT์— ์งˆ๋ฌธํ•œ๋‹ค.

'https://arxiv.org/pdf/1706.03762.pdf
์ด ๋…ผ๋ฌธ์—์„œ 3.2.2์˜ Multi-Head Attention์— ์žˆ๋Š” MultiHead(Q,K,V) ๋กœ ์‹œ์ž‘ํ•˜๋Š” ์ˆ˜์‹์„ ์—ฌ๊ธฐ์— ์˜ฎ๊ฒจ ์ ์–ด์ฃผ๊ณ  ๊ทธ ์ˆ˜์‹์˜ ์˜๋ฏธ๋ฅผ ์•Œ๊ธฐ ์‰ฝ๊ฒŒ ์•„์ฃผ ์ž์„ธํžˆ ์„ค๋ช…ํ•ด์ค˜'
(ํ•œ๋ฒˆ ๊ทธ๋Œ€๋กœ ๋ณต์‚ฌ ๋ถ™์—ฌ๋„ฃ๊ธฐ ํ•ด๋ณด์‹œ๊ธธ..)

์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์ˆ˜์‹์„ ๊ทธ๋Œ€๋กœ ๊ฐ€์ ธ์˜ค๊ณ  ์ฒจ๋ถ€ํ•œ ์บก์ณ์ฒ˜๋Ÿผ ์ˆ˜์‹์˜ ์˜๋ฏธ๋ฅผ ํ•ด์„ํ•ด์ค€๋‹ค.

ํ˜น์‹œ๋‚˜ ์ด๋ ‡๊ฒŒํ•ด๋„ ์–ด๋ ต๋‹ค๋ฉด ๋งˆ์ง€๋ง‰ ํ•„์‚ด๊ธฐ๋กœ ๋‹ค์Œ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž…๋ ฅํ•œ๋‹ค.
'5์‚ด ์–ด๋ฆฐ์ด์—๊ฒŒ ์„ค๋ช…ํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•˜๊ณ  ์‰ฝ๊ฒŒ ์•Œ๋ ค์ค˜'

๊ทธ๋ ‡๊ฒŒ ํ•˜์—ฌ ์–ป์€ ๋‹ต๋ณ€
----
๊ทธ๋Ÿผ์š”, ์ดํ•ดํ•˜๊ธฐ ์‰ฝ๊ฒŒ ์„ค๋ช…ํ•ด๋ณผ๊ฒŒ์š”!

์šฐ๋ฆฌ๊ฐ€ ์ฑ…์„ ์ฝ์„ ๋•Œ, ๋ชจ๋“  ๋‹จ์–ด๋ฅผ ๋™์ผํ•˜๊ฒŒ ์ค‘์š”ํ•˜๊ฒŒ ์ƒ๊ฐํ•˜์ง€ ์•Š์•„์š”. ์–ด๋–ค ๋‹จ์–ด๋Š” ์ดํ•ดํ•˜๋Š” ๋ฐ ๋” ์ค‘์š”ํ•˜๊ณ , ์–ด๋–ค ๋‹จ์–ด๋Š” ๊ทธ๋ ‡์ง€ ์•Š์ฃ . ์ด๋ ‡๊ฒŒ ์ค‘์š”ํ•œ ๋‹จ์–ด์— ์ง‘์ค‘ํ•˜๋Š” ๊ฒƒ์„ '์ฃผ์˜'๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

์ด์ œ, ์ด '์ฃผ์˜' ๊ฐœ๋…์„ ์ปดํ“จํ„ฐ๊ฐ€ ์ดํ•ดํ•˜๋„๋ก ๋งŒ๋“ค์–ด๋ณด์ž๊ณ  ์ƒ๊ฐํ•œ ์‚ฌ๋žŒ๋“ค์ด ์žˆ์–ด์š”. ๊ทธ๋ž˜์„œ ๋งŒ๋“  ๊ฒƒ์ด '์–ดํ…์…˜'์ด๋ผ๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ์ด ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•˜๋ฉด ์ปดํ“จํ„ฐ๋„ ์ค‘์š”ํ•œ ์ •๋ณด์— ๋” ์ง‘์ค‘ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

๊ทธ๋Ÿฐ๋ฐ ์‚ฌ๋žŒ๋งˆ๋‹ค ์ค‘์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋Š” ์ •๋ณด๊ฐ€ ๋‹ค๋ฅด๋“ฏ์ด, ์ปดํ“จํ„ฐ๋„ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์œผ๋กœ ์ •๋ณด๋ฅผ ์ค‘์š”ํ•˜๊ฒŒ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์–ด์š”. ์ด๋Ÿฐ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์„ ํ•œ ๋ฒˆ์— ์‚ฌ์šฉํ•˜๋ฉด ๋” ๋งŽ์€ ์ •๋ณด๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๊ฒ ์ฃ ? ์ด๋Ÿฐ ์•„์ด๋””์–ด์—์„œ '๋ฉ€ํ‹ฐ ํ—ค๋“œ ์–ดํ…์…˜'์ด๋ผ๋Š” ๊ธฐ์ˆ ์ด ํƒ„์ƒํ–ˆ์Šต๋‹ˆ๋‹ค.

'๋ฉ€ํ‹ฐ ํ—ค๋“œ ์–ดํ…์…˜'์€ ๋งˆ์น˜ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋จธ๋ฆฌ๋ฅผ ๊ฐ€์ง„ ๊ฒƒ์ฒ˜๋Ÿผ, ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์œผ๋กœ ์ •๋ณด๋ฅผ ์ค‘์š”ํ•˜๊ฒŒ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๋ชจ์•„์„œ ํ•˜๋‚˜์˜ ๊ฒฐ๋ก ์„ ๋‚ด๋ฆฝ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์ปดํ“จํ„ฐ๋Š” ํ•œ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•๋งŒ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ๋” ๋งŽ์€ ์ •๋ณด๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์–ด์š”. ์ด๊ฒŒ '๋ฉ€ํ‹ฐ ํ—ค๋“œ ์–ดํ…์…˜'์˜ ๊ธฐ๋ณธ ์•„์ด๋””์–ด์ž…๋‹ˆ๋‹ค.
----
๋งŽ์ด๋“ค ์‚ฌ์šฉํ•ด๋ณด์„ธ์š”!
์ฃผ์–ด์ง„ ๊ณผ์—…์„ ์•„์ด๋””์–ด ๋‹จ๊ณ„์—์„œ๋ถ€ํ„ฐ ๊ตฌํ˜„, ๊ทธ๋ฆฌ๊ณ  ๊ฒ€์ฆ๊นŒ์ง€ ํ•ด๋ณผ ์ˆ˜ ์žˆ๋Š” ๊ฒฝํ—˜์„ ์Šค์Šค๋กœ ์Œ“์•„ ์ž์‹ ์˜ ๊ฒƒ์œผ๋กœ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ๋งค์šฐ ์ค‘์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ž๋™ํ™”๋œ ํˆด์„ ํ™œ์šฉํ•ด๋„ ๊ทธ ํˆด์„ ์ด์šฉํ•˜์—ฌ, ์‚ฌ๋žŒ๋“ค์ด ๊ทธ๊ฐ„ ๋ชป ํ’€๋˜ ๋ฌธ์ œ๋‚˜ ์‹œ๊ฐ„์ด ๋งŽ์ด ๊ฑธ๋ ธ๋˜ ๋ฌธ์ œ, ํ˜น์€ ์‹œ๊ฐํ™”ํ•˜๊ธฐ ์–ด๋ ต๊ฑฐ๋‚˜, ๋‹ค์–‘ํ•œ ์Šค์ผ€์ผ์—์„œ ์—ฐ๊ฒฐํ•˜๊ธฐ ์–ด๋ ค์› ๋˜ ๋ฌธ์ œ๋ฅผ ํ’€ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ด์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Ÿฐ ์ž‘์—…๋“ค์€ ๊ธฐ์ˆ ์˜ ํ˜์‹ ์ด ๊ฑฐ๋“ญ๋ ์ˆ˜๋ก ๋”์šฑ ๋” ์š”๊ตฌ๋˜๋Š” ์ˆ˜์ค€์ด ๋†’์•„์งˆ ๊ฒƒ์ด๋‹ค. ํ•™์ƒ ์‹œ์ ˆ, ์ปดํ“จํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ณผ์ œ๋ฅผ ํ•˜๋“ , ๊ฐœ๋ฐœ์„ ํ•˜๋“ , ํ”„๋กœ์ ํŠธ๋ฅผ ํ•˜๋“ , ์ฐฝ์—…์„ ํ•˜๋“ , ์ด๋Ÿฌํ•œ ๊ณผ์ •์—์„œ์˜ ๊ฒฝํ—˜์„ ์Œ“๋Š” ๊ฒƒ์€ ๊ทธ๋ž˜์„œ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค.
๐Ÿ‘3
๊ทธ๋Ÿฌ๋‚˜ ์ด์ œ ๊ธ€๋กœ๋ฒŒ ๋ถ„์—…ํ™”์™€ ์ž์œ ๋ฌด์—ญ์‹œ๋Œ€, ๊ทธ๋ฆฌ๊ณ  ์ฒจ๋‹จ ๊ธฐ์ˆ ์˜ ์ƒํ˜ธํ˜‘๋ ฅ ์‹œ๋Œ€๋Š” ๋ถˆํ™•์‹ค์„ฑ์˜ ์‹œ๋Œ€๋กœ ์ ‘์–ด๋“ค๊ฒŒ ๋˜์—ˆ๋‹ค. ๋ฏธ-์ค‘ ์ฒจ๋‹จ ๊ธฐ์ˆ  ํŒจ๊ถŒ ๊ฒฝ์Ÿ์œผ๋กœ ๋Œ€ํ‘œ๋˜๋Š” ๊ธฐ์ •ํ•™์˜ ์‹œ๋Œ€, ์ด์ œ ๋ฏธ๊ตญ๊ณผ ์ค‘๊ตญ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์„ธ๊ณ„ ๊ฐ๊ตญ์€ ์ฒจ๋‹จ ์‚ฐ์—…์„ ์ค‘์‹ฌ์œผ๋กœ ๊ตญ๋ถ€์˜ ์ฐฝ์ถœ๊ณผ ์ง๊ฒฐ๋˜๋Š” ์‚ฐ์—…์„ ๋ณดํ˜ธํ•˜๊ณ  ์ž๊ตญ์˜ ์ด์ต์„ ์•ˆ๋ณด์  ๊ด€์ ์—์„œ ๋‹ค์‹œ ์šฐ์„ ์ ์œผ๋กœ ๊ณ ๋ คํ•˜๋Š” ์‚ฐ์—… ๋ณดํ˜ธ ๊ธฐ์กฐ๊ฐ€ ๊ฐ•ํ•ด์ง€๊ณ  ์žˆ๋‹ค. ํ•œ๊ตญ์˜ ์ฒจ๋‹จ ์‚ฐ์—…์€ ํ•œ๊ตญ์˜ ์ข์€ ์‹œ์žฅ์„ ๋„˜์–ด ๊ธ€๋กœ๋ฒŒ ์‹œ์žฅ ์ „์ฒด๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ˆ˜์ต์„ ์ฐฝ์ถœํ•ด ์™”๊ธฐ ๋•Œ๋ฌธ์— ์ด๋Ÿฌํ•œ ์‹œ๋Œ€์  ์ƒํ™ฉ, ๊ตญ์ œ์ •์น˜์  ์ƒํ™ฉ์˜ ๋ณ€ํ™”์™€ ๋ถˆํ™•์‹ค์„ฑ์€ ๊ณง ํ•œ๊ตญ์˜ ์‚ฐ์—… ๋ฐœ์ „์—๋„ ๋ถˆํ™•์‹ค์„ฑ์ด ์ปค์งˆ ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ํ•œ๊ตญ์˜ ๊ฒฝ์ œ๋Š” ๊ตฌ์กฐ๊ณ ๋„ํ™”์™€ ๊ท ํ˜•์„ฑ์žฅ์˜ ์‹œ๋Œ€๋ฅผ ๊ฑฐ์ณ ์ด ๋ถˆํ™•์‹ค์„ฑ์˜ ์‹œ๋Œ€, ์ผ๋ณธ ๊ฐ™์€ ์žฅ๊ธฐ๊ฐ„์˜ ์ €์„ฑ์žฅ ํ•จ์ •์— ๋น ์งˆ ์ˆ˜๋„ ์žˆ๊ณ , ์ตœ์•…์˜ ๊ฒฝ์šฐ ์ดํƒˆ๋ฆฌ์•„ ์‚ฌ๋ก€๊ฐ™์ด ํ‡ด๋ณดํ•  ์ˆ˜๋„ ์žˆ๋‹ค.

์˜๊ตญ์ด๋‚˜ ์‹ฑ๊ฐ€ํฌ๋ฅด์™€ ๋‹ค๋ฅธ ๊ตฌ์กฐ์ž„์—๋„ ๋‘ ๋‚˜๋ผ์™€ ์œ ์‚ฌํ•œ ํƒˆ์‚ฐ์—…ํ™” ์ •์ฑ…์œผ๋กœ ๋ฌด๋ฆฌํ•œ ์ „ํ™˜์„ ์‹œ๋„ํ•  ๊ฒฝ์šฐ, ์ „๋žต์ ์œผ๋กœ ๋ณดํ˜ธํ•ด์•ผ ํ•  ์‚ฐ์—…, ํŠนํžˆ ์ œ์กฐ์—…์˜ ๊ธฐ๋ฐ˜์ด ์•ฝํ•ด์งˆ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‚ฐ์—… ๊ทœ๋ชจ ์ž์ฒด์˜ ํŒฝ์ฐฝ์„ ์œ„ํ•ด ๋ฌด๋ฆฌํ•œ ์ž๋ณธํˆฌ์ž…์„ ์‹œ๋„ํ•  ๊ฒฝ์šฐ ๊ตฌ์กฐ๊ณ ๋„ํ™” ๊ธฐ์กฐ์— ์žˆ๋Š” ์ค‘๊ตญ๊ณผ์˜ ๊ณผ์—ด ๊ฒฝ์Ÿ, ๊ทธ๋ฆฌ๊ณ  ๊ทธ๋กœ ์ธํ•œ ๊ณ ๋น„์šฉ ๊ตฌ์กฐ์˜ ๊ณ ์ฐฉํ™”๋ฅผ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ถˆํ™•์‹ค์„ฑ์ด ๋ˆ„์ ๋˜๋Š” ์ง€๊ธˆ, ํ•œ๊ตญ์˜ ์‚ฐ์—… ๋ฐœ์ „ ์ „๋žต์€ ๋ฌด์—‡์ด ๋˜์–ด์•ผ ํ• ๊นŒ?

2022๋…„ ํ•˜๋ฐ˜๊ธฐ, ํ•œ๊ตญ ์ •๋ถ€๋Š” 12๊ฐœ ๊ตญ๊ฐ€์ „๋žต๊ธฐ์ˆ ์„ ์„ ์ •ํ•˜์˜€๊ณ , ๊ฐ ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ์„ธ๋ถ€ ์ „๋žต ๊ธฐ์ˆ  ๋„ํ•ฉ 50๊ฐœ๋ฅผ ๋ฐœํ‘œํ–ˆ๋‹ค. ๊ฐ๊ฐ์˜ ์„ธ๋ถ€ ๊ธฐ์ˆ ์€ ํ˜์‹ ์˜ ์„ ๋„, ๋ฏธ๋ž˜์— ๋Œ€ํ•œ ๋„์ „, ๊ทธ๋ฆฌ๊ณ  ๊ตญ๊ฐ€ ์‚ฐ์—…์˜ ํ•„์ˆ˜ ๊ธฐ๋ฐ˜์„ ์ด๋ฃจ๋Š” ๊ตฌ์„ฑ ์š”์†Œ๋กœ ๋ถ„๋ฅ˜๋˜์–ด ์ „๋žต์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. 12๋Œ€ ์ „๋žต๊ธฐ์ˆ ์—๋Š” ๋ฐ˜๋„์ฒด์™€ ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ํ•„๋‘๋กœ, ์ด์ฐจ์ „์ง€, ์ฒจ๋‹จ ๋ชจ๋นŒ๋ฆฌํ‹ฐ, ์ฐจ์„ธ๋Œ€ ์›์ž๋ ฅ, ์ธ๊ณต์ง€๋Šฅ, ์ฒจ๋‹จ๋กœ๋ด‡๊ณผ ์ œ์กฐ, ์ฐจ์„ธ๋Œ€ ํ†ต์‹ , ์–‘์ž๊ธฐ์ˆ , ์ฒจ๋‹จ ๋ฐ”์ด์˜ค, ์šฐ์ฃผํ•ญ๊ณต๊ณผ ํ•ด์–‘, ์ˆ˜์†Œ, ๊ทธ๋ฆฌ๊ณ  ๋งˆ์ง€๋ง‰์œผ๋กœ ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ ๊ธฐ์ˆ ์ด ํฌํ•จ๋œ๋‹ค

๊ธฐ์กด์˜ ์‚ฐ์—… ์ •์ฑ…์— ๋”ํ•ด ํ•œ๊ตญ์„ ๋‘˜๋Ÿฌ์‹ผ ๋” ํฐ ์Šค์ผ€์ผ์˜ ๊ธฐ์ •ํ•™์  ์ƒํ™ฉ์˜ ๋ณ€ํ™”์— ๋Œ€ํ•œ ๊ณ ๋ ค์™€ ๊ฐ ์ „๋žต ๊ธฐ์ˆ ์˜ ์ƒํ˜ธ ๊ฐ„ ์˜์กด ๊ด€๊ณ„, ๊ตญ๊ฐ€ ๊ฐ„ ์˜์กด ๊ด€๊ณ„, ๊ทธ๋ฆฌ๊ณ  ๊ณ ๋„ํ™” ๋กœ๋“œ๋งต์„ ๊ณ ๋ คํ•œ ์ „๋žต์  ๋ณ€ํ˜์ด ๋’ค๋”ฐ๋ผ์•ผ ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ๋ฏธ๊ตญ์˜ ์˜ˆ๋ฅผ ๋“ค์–ด ๋ณด์ž.

๋ฏธ๊ตญ์€ 1970๋…„๋Œ€ ์นดํ„ฐ-1980๋…„๋Œ€ ๋ ˆ์ด๊ฑด ์ •๋ถ€, 2000๋…„๋Œ€ ์˜ค๋ฐ”๋งˆ ์ •๋ถ€์—์„œ ์šฐ์ฃผํ•ญ๊ณต ๋ฐ ๊ตฐ์‚ฌ ๋ถ„์•ผ, ๊ทธ๋ฆฌ๊ณ  ๋‚˜๋…ธ ๊ธฐ์ˆ ๊ณผ IT ๋ถ„์•ผ์—์„œ์˜ ์‚ฐ์—… ์ •์ฑ…์„ ์„ ๋ณด์ธ ๋ฐ” ์žˆ๋‹ค. ๋ฏธ๊ตญ์€ ๋ฐ”์ด๋“  ์ •๋ถ€ ๋“ค์–ด, ์ด๋Ÿฌํ•œ ์ „๋žต์  ์‚ฐ์—… ์ •์ฑ…์„ ๋ฏธ-์ค‘ ๊ฐ„ ํŒจ๊ถŒ ๊ฒฝ์Ÿ์˜ ์ตœ์„ ๋‹จ ์ •์ฑ…์œผ๋กœ์„œ ์ค‘์š”๋„๋ฅผ ์ƒํ–ฅ ์กฐ์ •ํ•˜์˜€์œผ๋ฉฐ, ๊ทธ ๋Œ€ํ‘œ์ ์ธ ๊ฒฐ๊ณผ๋ฌผ์ด ๋ฐ”๋กœ 2022๋…„์— ํ†ต๊ณผ๋œ IRA์™€ CHIPS ๋ฒ•์•ˆ์ด๋‹ค. IRA ๋ฒ•์•ˆ์€ ์ฃผ๋กœ ์—๋„ˆ์ง€ ์‚ฐ์—…, ๊ทธ์ค‘์—์„œ๋„ ๋ฐฐํ„ฐ๋ฆฌ ์‚ฐ์—…์—์„œ, ๊ทธ๋ฆฌ๊ณ  CHIPS ๋ฒ•์•ˆ์€ ์ฃผ๋กœ ๋ฐ˜๋„์ฒด ์‚ฐ์—…, ๊ทธ์ค‘์—์„œ๋„ ์ฒจ๋‹จ ๋ฐ˜๋„์ฒด ์ œ์กฐ ์‚ฐ์—…์—์„œ์˜ ๋ฏธ๊ตญ ๊ตญ์ต ๋ณดํ˜ธ์™€ ์‚ฐ์—… ์ง€๋ฐฐ๋ ฅ ๊ฐ•ํ™”๋ฅผ ํƒ€๊นƒ์œผ๋กœ ํ•œ๋‹ค. ๋ฐ˜๋„์ฒด ์‚ฐ์—…์—์„œ๋Š” ๋ฏธ๊ตญ์ด ์ค‘๊ตญ์„ ์ผ๋ฐฉ์ ์œผ๋กœ ๊ฒฌ์ œํ•  ์ˆ˜ ์žˆ๋Š” ํฌ์ธํŠธ๊ฐ€ ๋„“๊ฒŒ ํฌ์ง„๋˜์–ด ์žˆ๋‹ค. ๋ฐ˜๋„์ฒด ์นฉ์˜ ์„ค๊ณ„๋ถ€ํ„ฐ ์ฒจ๋‹จ ์ œ์กฐ ์žฅ๋น„, ๊ทธ๋ฆฌ๊ณ  ์ผ๋ถ€ ์†Œ์žฌ์™€ ๋ถ€ํ’ˆ, ํŒน๋ฆฌ์Šค ํšŒ์‚ฌ๊ฐ€ ์ œ์ž‘ํ•˜๋Š” ์ธ๊ณต์ง€๋Šฅ ๋ฐ˜๋„์ฒด์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ๋ฐ˜๋„์ฒด ์‚ฐ์—…์˜ ๊ฑฐ์˜ ์ „ ์˜์—ญ์—์„œ ๋ฏธ๊ตญ์€ ๊ธ€๋กœ๋ฒŒ ๋ฐ˜๋„์ฒด ์‚ฐ์—…์„ ์ง€์†์ ์œผ๋กœ ๋ฆฌ๋“œํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฏธ๊ตญ์€ ์ƒ๋Œ€์ ์œผ๋กœ ๊ธฐ์ˆ  ์ˆ˜์ค€๊ณผ ์‹œ์žฅ ์ ์œ ์œจ์— ๊ฒฉ์ฐจ๊ฐ€ ์žˆ๋Š” ํ›„๋ฐœ๊ตญ์ธ ์ค‘๊ตญ์˜ ๋ฐ˜๋„์ฒด ์‚ฐ์—… ๊ฒฌ์ œ๋ฅผ ์œ„ํ•œ ์„ ์ˆ˜๋ฅผ ๋‘˜ ์ˆ˜ ์žˆ๋Š” ์ž…์žฅ์„ ์ทจํ•  ์ˆ˜ ์žˆ๋‹ค.

๋Œ€ํ‘œ์ ์ธ ์†Œ์žฌ ๊ธฐ๋ฐ˜ ์‚ฐ์—…์ธ ๋ฐฐํ„ฐ๋ฆฌ ์‚ฐ์—…์—์„œ๋Š” ์ค‘๊ตญ์ด ์ž์ฒด์ ์ธ ์•ˆ์ •์  ๊ณต๊ธ‰๋ง์„ ๋ณด์œ ํ•˜๊ณ  ์žˆ์„๋ฟ๋”๋Ÿฌ, ์ค‘๊ตญ ๋ฐฐํ„ฐ๋ฆฌ ์—…์ฒด๋“ค์˜ ์„ธ๊ณ„ ์‹œ์žฅ ์ ์œ ์œจ์ด ์ด์ œ ์ ˆ๋ฐ˜์„ ๋„˜์–ด 2020๋…„๋Œ€ ๋ง๊ฒฝ์—๋Š” 3๋ถ„์˜ 2์— ์œก๋ฐ•ํ•  ๊ฒƒ์œผ๋กœ ์ „๋ง๋˜๋Š” ์ƒํ™ฉ์ด๋‹ค. ํŠนํžˆ, ์•ž์œผ๋กœ ์ „๊ธฐ์ฐจ ์‹œ์žฅ๊ณผ ๊ฐ ์ œ์กฐ์—… ๋ถ„์•ผ์˜ ํƒ„์†Œ์ค‘๋ฆฝ, ํƒˆ์‚ฐ์†Œํ™”์— ํ•„์š”ํ•œ ์‹ ์žฌ์ƒ์—๋„ˆ์ง€ ์ „๋ ฅ ์ €์žฅ ์‹œ์„ค(์˜ˆ๋ฅผ ๋“ค์–ด ESS)์˜ ์ˆ˜์š”๊ฐ€ ๊ธ‰์ฆํ•จ์— ๋”ฐ๋ผ ์ค‘๊ตญ์˜ ๋ฐฐํ„ฐ๋ฆฌ ์‚ฐ์—… ์ง€๋ฐฐ๋ ฅ์€ ๋”์šฑ ๊ฐ•ํ•ด์งˆ ๊ฒƒ์ด๋ผ๋Š” ์˜ˆ์ƒ์ด ์ฃผ๋ฅผ ์ด๋ฃฌ๋‹ค. ์ค‘๊ตญ์˜ ๋ฐฐํ„ฐ๋ฆฌ ์‚ฐ์—…์€ ์ƒ์‚ฐ ์ ์œ ์œจ๊ณผ ๊ธฐ์ˆ ๋ ฅ ๋ชจ๋‘ ๋ฏธ๊ตญ์„ ์••๋„ํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ฏธ๊ตญ์˜ IRA ๋ฒ•์•ˆ์ด ์ค‘๊ตญ ๋ฐฐํ„ฐ๋ฆฌ ์‚ฐ์—…์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์€ ์ œํ•œ์ ์ด๋ฉฐ, ์˜คํžˆ๋ ค ๋ฏธ๊ตญ์˜ ์ž๋™์ฐจ ์‚ฐ์—…๊ณผ ์—๋„ˆ์ง€ ์‚ฐ์—…์—์„œ ๋ฐฐํ„ฐ๋ฆฌ๊ฐ€ ํ•„์ˆ˜์žฌ๋กœ ์ž๋ฆฌ์žก๊ฒŒ ๋  ๊ฒฝ์šฐ, ์ ์–ด๋„ ๋ฐฐํ„ฐ๋ฆฌ ์‚ฐ์—…์—๋Š” ์ค‘๊ตญ๊ณผ ๋ฏธ๊ตญ์˜ ๊ตฌ๋„๊ฐ€ ์—ญ์ „๋œ๋‹ค. ์ฆ‰, ์ค‘๊ตญ์ด ๋ฏธ๊ตญ์„ ๊ฒฌ์ œํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค.

๋ฏธ๊ตญ ์ž…์žฅ์—์„œ ๋ฐฐํ„ฐ๋ฆฌ ๊ธฐ์ˆ ์„ ์ „๋žต ๊ธฐ์ˆ ๋กœ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ฐฐํ„ฐ๋ฆฌ ์‚ฐ์—…์ด ์†Œ์žฌ ์‚ฐ์—…์ž„์„ ๊ณ ๋ คํ•˜์—ฌ ๋ฐฐํ„ฐ๋ฆฌ ์‚ฐ์—…์˜ ์›๋ฃŒ(์›๊ด‘), ๋ถ€ํ’ˆ, ์†Œ์žฌ, ์กฐ๋ฆฝ, ์žฌํ™œ์šฉ์œผ๋กœ ์ด์–ด์ง€๋Š” ์ผ๋ จ์˜ ๊ณต๊ธ‰๋ง์„ ๋ฏธ๊ตญ ์ค‘์‹ฌ์œผ๋กœ ์žฌ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ •์ฑ…์ด ์„ค๊ณ„๋˜์–ด์•ผ ํ•œ๋‹ค. ๋˜ํ•œ ๋Œ€์šฉ๋Ÿ‰ ๋ฐฐํ„ฐ๋ฆฌ ๊ตฌ์กฐ ๋ฐ ์šฉ๋Ÿ‰ ํ™•์žฅ, ์–‘๊ทน์žฌ ํšจ์œจ ๊ฐ•ํ™”, ๊ทธ๋ฆฌ๊ณ  ์ˆ˜๋ช… ์—ฐ์žฅ ๊ธฐ์ˆ  ์„ ํ–‰ ํŠนํ—ˆ ๊ด€๋ฆฌ ์ „๋žต๋„ ํ•„์š”ํ•  ๊ฒƒ์ด๋‹ค.

๋ถ€์ฒ˜๋ฅผ ์ดˆ์›”ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณผ์ œ ๊ด€๋ฆฌ ๊ธฐ๊ด€์˜ ์„ค์ •๊ณผ ๊ถŒํ•œ ๋ถ€์—ฌ, ์ž์›์˜ ์ง‘์ค‘๊ณผ ๊ด€๋ฆฌ, ์ธ์ ยท๋ฌผ์  ์ž์›์˜ ํ†ตํ•ฉ๊ณผ ์ž์œ ๋„ ํ™•์žฅ ๋“ฑ์˜ ์ œ๋„์  ๊ฐœํŽธ์ด ๋’ค๋”ฐ๋ฅด์ง€ ์•Š์œผ๋ฉด ์ด๋Ÿฌํ•œ ์ง€๋ฐฐ ๊ตฌ์กฐ ๊ฐœํŽธ์€ ๊ณต์—ผ๋ถˆ์ด ๋  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ตฌ์ฒด์ ์œผ๋กœ๋Š” ๊ตญ๊ฐ€์ „๋žต๊ธฐ์ˆ ๊ณผ ๊ด€๋ จ๋œ ์‚ฐ์—…์— ๋Œ€ํ•œ ๊ทœ์ œ ์ƒŒ๋“œ๋ฐ•์Šค ๋…ผ์˜๊ฐ€ ๋ฒ”๋ถ€์ฒ˜์ ์œผ๋กœ ์ด๋ค„์ ธ์•ผ ํ•˜๋ฉฐ, ์ •๋ถ€ ์ฃผ๋„์˜ ์—ฐ๊ตฌ๊ฐœ๋ฐœ ํ”„๋กœ๊ทธ๋žจ ์ •์ฑ…์€ ์ดˆ๊ธฐ ๋‹จ๊ณ„๋ถ€ํ„ฐ ๊ฐ ๋ถ€์ฒ˜์˜ ์ƒํ˜ธ ์ดํ•ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ†ตํ•ฉ ๊ตฌ์„ฑ ๋ฐ ๊ด€๋ฆฌ๋  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ๋˜ํ•œ ๊ฐ ๋ถ€์ฒ˜ ์ฐจ์›์˜ ์ž๊ธˆ ์ง€์›๊ณผ ํŽ€๋“œ ํ™•๋ณด๋Š” TIPS๋‚˜ ์กฐ์„ธ ์ง€์› ๋ฐฉ์‹ ๋“ฑ์˜ ๊ฐœ๋… ๋‹จ๊ณ„์—์„œ๋ถ€ํ„ฐ ๊ฐ™์€ ๊ธฐ์ค€์„ ๊ณต์œ ํ•˜๋ฉฐ ์ •์ฑ…์  ์ผ๊ด€์„ฑ์„ ํ™•๋ณดํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค.

๋ฌธ์ œ๋Š” ์ธ๋ ฅ ์–‘์„ฑ์€ ๊ต์œก๋ถ€, ๊ณผ๊ธฐ์ •ํ†ต๋ถ€, ์‚ฐ์—…์ž์›๋ถ€ ๋“ฑ, ๊ฐ ๋ถ€์ฒ˜์—์„œ ๊ฐ ๋ถ€์ฒ˜์˜ ๊ณ ์œ  ์‚ฌ์—…์— ๋Œ€ํ•œ ์ธ๋ ฅ ์–‘์„ฑ์œผ๋กœ ์„ธ๋ถ„ํ™”๋˜์–ด ์ถ”์ง„๋œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์ •๋ถ€๊ฐ€ ์˜์ง€๋ฅผ ๊ฐ€์ง€๊ณ  ์ตœ๊ทผ ์‹œํ–‰ํ•˜๊ณ  ์žˆ๋Š” ๋ฐ˜๋„์ฒด ์‚ฐ์—… ์ „๋ฌธ ์ธ๋ ฅ ์–‘์„ฑ ์‚ฌ์—…์˜ ์ผํ™˜์œผ๋กœ, ๋ฐ˜๋„์ฒด์œตํ•ฉ๋Œ€ํ•™ ํ•™๋ถ€ ์‚ฌ์—…์€ ๊ต์œก๋ถ€ ์ฃผ๊ด€์œผ๋กœ, ๋ฐ˜๋„์ฒด์œตํ•ฉ๋Œ€ํ•™์› ์‚ฌ์—…์€ ์‚ฐ์ž๋ถ€ ์ฃผ๊ด€์œผ๋กœ ๊ตฌ๋ถ„๋˜์–ด ์žˆ๋‹ค. ์‹ค์ œ ๋Œ€ํ•™ ํ˜„์žฅ์—์„œ๋Š” ํ•™๋ถ€์™€ ๋Œ€ํ•™์›์˜ ์—ฐ๊ณ„๋ฅผ ํ†ตํ•ด ์ฒจ๋‹จ ๊ธฐ์ˆ  ์‚ฐ์—…์— ์ง„์ถœํ•  ์ „๋ฌธ ์ธ๋ ฅ์„ ๊ต์œกํ•˜๊ณ  ํ›ˆ๋ จ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ํ”„๋กœ๊ทธ๋žจ์˜ ์—ฐ์†์„ฑ์ด ์ค‘์š”ํ•˜๋‚˜, ํ˜„์žฌ์˜ ์ธ๋ ฅ ์–‘์„ฑ์˜ ์ •์ฑ…์€ ์†Œ๊ด€ ๋ถ€์ฒ˜๊ฐ€ ๋‹ค๋ฅด๊ณ  ์‚ฌ์—… ๊ธฐ๊ฐ„์ด ๋‹ค๋ฅด๋ฉฐ ์‚ฌ์—…์˜ ์„ฑ๊ฒฉ์— ์—ฐ์†์„ฑ์ด ๋ถ€์กฑํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ•™๋ถ€์™€ ๋Œ€ํ•™์› ์‚ฌ์ด์—์„œ ๋‹จ์ ˆ์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ตญ๊ฐ€์ „๋žต๊ธฐ์ˆ ๊ณผ ์—ฐ๊ด€๋œ ์‚ฐ์—… ์ „๋ฌธ ์ธ๋ ฅ ์–‘์„ฑ์€ ์ง€๋ฐฐ ๊ตฌ์กฐ์™€ ๋”๋ถˆ์–ด ๋ถ€์ฒ˜ ๊ฐ„ ์ดํ•ด๊ด€๊ณ„๋ฅผ ์ดˆ์›”ํ•˜๋Š” ๋ฐฉํ–ฅ์—์„œ ์žฌ์ •๋ฆฝ๋˜์–ด์•ผ ํ•œ๋‹ค.

์•ž์„œ ์˜ˆ๋กœ ๋“  ์–‘์ž ICT ๋ถ„์•ผ์—์„œ์˜ ํ˜‘๋ ฅ์˜ ๊ฒฝ์šฐ, ํ˜„์žฌ ๋ฏธ๊ตญ์€ ์˜๊ตญ, ์บ๋‚˜๋‹ค, ํ˜ธ์ฃผ ๋“ฑ ์ด๋ฅธ๋ฐ” ํŒŒ์ด๋ธŒ ์•„์ด์ฆˆ(FIVE EYES) ๊ตญ๊ฐ€๋“ค์„ ์œ„์ฃผ๋กœ ๋‹ค์†Œ ํ์‡„์ ์ธ ํ˜‘๋ ฅ ๊ด€๊ณ„๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ  ์žˆ๋‹ค. ์ผ๋ณธ์ด ์—ฌ๊ธฐ์— ์ถ”๊ฐ€๋  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์œผ๋ฉฐ, ์ด๋Š” ์ผ๋ณธ๊ณผ ๋ฏธ๊ตญ์˜ ์™ธ๊ต์•ˆ๋ณดํ˜‘๋ ฅ ๊ด€๊ณ„๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์–‘๊ตญ์ด ์ „๋žต๊ธฐ์ˆ  ๋ถ„์•ผ์—์„œ์˜ ์ดํ•ด๊ด€๊ณ„๋ฅผ ๊ณต์œ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ํŒ๋‹จ์—์„œ ๋น„๋กฏ๋œ ๊ฒƒ์ด๋‹ค. ์–‘๊ตญ์˜ ์ „๋žต๊ธฐ์ˆ  ํ˜‘๋ ฅ์€ ์˜ˆ๋ฅผ ๋“ค์–ด, ๋ฏธ๊ตญ์˜ IBM๊ณผ ์ผ๋ณธ์˜ ์ดํ™”ํ•™์—ฐ๊ตฌ์†Œ(๋ฆฌ์ผ„)์˜ ํ˜‘๋ ฅ์„ ๋ฐ”ํƒ•์œผ๋กœ 2022๋…„ ๋ง๋ถ€ํ„ฐ ์ถ”์ง„๋˜๊ณ  ์žˆ๋Š” ์ผ๋ณธ์˜ ์ฒจ๋‹จ 2๋‚˜๋…ธ๊ธ‰ ์‹œ์Šคํ…œ๋ฐ˜๋„์ฒด ์ œ์กฐ ๋ถ€ํ™œ ํ”„๋กœ์ ํŠธ์ธ ๋ผํ”ผ๋”์Šค ํ”„๋กœ์ ํŠธ๋กœ ๋Œ€ํ‘œ๋œ๋‹ค. ์ฒจ๋‹จ ๋ฐ˜๋„์ฒด ์ƒ์‚ฐ์—์„œ ํ•œ๊ตญ, ๋Œ€๋งŒ, ์ค‘๊ตญ์— ์ง‘์ค‘์ ์œผ๋กœ ํฌ์ง„๋œ ์‚ฐ์—…์˜ ๋ฌด๊ฒŒ์ค‘์‹ฌ์„ ๋‹ค๋ฅธ ์ง€์—ญ์œผ๋กœ ๋ถ„์‚ฐ์‹œํ‚จ๋‹ค๋Š” ๋ฏธ๊ตญ์˜ ์˜๋„์™€ ์ž๊ตญ์˜ ๋ฐ˜๋„์ฒด ์ œ์กฐ์—… ๋ถ€ํ™œ์„ ๊ฟˆ๊พธ๋Š” ์ผ๋ณธ์˜ ์ดํ•ด๊ด€๊ณ„๊ฐ€ ๋งž์•„๋–จ์–ด์ง€๋ฉด์„œ, ๋ฏธ๊ตญ์€ ์ž๊ตญ์œผ๋กœ์˜ ๋ฐ˜๋„์ฒด ์ƒ์‚ฐ ์‹œ์„ค ํ™•๋ณด๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์œ„ํ—˜ ํ—ท์ง• ์ฐจ์›์—์„œ ์ผ๋ณธ์˜ ๊ตฌ์„ธ๋Œ€ ํŒน์„ ๋˜์‚ด๋ฆฌ๋ฉฐ ์ผ๋ณธ์ด ์•„์ง ๋ณด์œ ํ•˜๊ณ  ์žˆ๋Š” ๋ฐ˜๋„์ฒด ์ œ์กฐ ๋ถ„์•ผ์—์„œ์˜ ํ•„์ˆ˜ ๊ธฐ์ˆ  ์ž์‚ฐ์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์„ ๋ชจ์ƒ‰ํ•˜๊ณ  ์žˆ๋‹ค.

์•ž์œผ๋กœ์˜ ์‹œ๋Œ€๋Š” ์‚ฐ์—…์˜ ๊ณต๊ธ‰๋ง์„ ๋„˜์–ด, ์ง€์‹์˜ ๋ฐธ๋ฅ˜์ฒด์ธ์„ ์ฃผ๋„ํ•˜๋Š” ๊ตญ๊ฐ€์—๊ฒŒ ์ „๋žต๊ธฐ์ˆ ์˜ ์ฃผ๋„๊ถŒ์ด ๋„˜์–ด๊ฐˆ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์•„์งˆ ๊ฒƒ์ด๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ฐธ๋ฅ˜์ฒด์ธ์„ ๋ฐ”ํƒ•์œผ๋กœ ์ „๋žต๊ธฐ์ˆ ์— ํ•ด๋‹นํ•˜๋Š” ์‚ฐ์—…์— ๋Œ€ํ•ด ๊ฐ๊ตญ์€ ๋‚ด์žฌํ™” ๊ฒฝ์Ÿ์— ๋Œ์ž…ํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ๋‚ด์žฌํ™”๋  ์ˆ˜ ์—†๋Š” ๋ถ€๋ถ„์€ ์ „๋žต์  ํ˜‘๋ ฅ ๊ด€๊ณ„๋ฅผ ํ†ตํ•ด ๋ณด๊ฐ• ์‹œ๋„๊ฐ€ ํšกํ–‰ํ•  ๊ฒƒ์ด๋ฉฐ, ๊ฐ๊ตญ์˜ ๊ตญ๊ฐ€ ์•ˆ๋ณด์—์„œ๋„ ๊ฒฝ์ œ ์•ˆ๋ณด์™€ ๊ธฐ์ˆ  ์•ˆ๋ณด์— ๋Œ€ํ•œ ๋น„์ค‘์€ ๊ณ„์† ๋†’์•„์งˆ ๊ฒƒ์ด๋‹ค.
Code Interpreter does not immediately show up you have to turn it on. Go to your settings and click on beta features and then toggle on Code Interpreter.

These use cases are in no particular order but they will give you good insight into what is possible with this tool.

Edit Videos: You can edit videos with simple prompts like adding slow zoom or panning to a still image. Example: Covert this GIF file into a 5 second MP4 file with slow zoom (Link to example)

Perform Data Analysis: Code Interpreter can read, visualize, and graph data in seconds. Upload any data set by using the + button on the left of the text box. Example: Analyze my favorites playlist in Spotify Analyze my favorites playlist in Spotify (Link to example)

Convert files: You can convert files straight inside of ChatGPT. Example: Using the lighthouse data from the CSV file in into a Gif (Link to example)

Turn images into videos: Use Code Interpreter to turn still images into videos. Example Prompt: Turn this still image into a video with an aspect ratio of 3:2 will panning from left to right. (Link to example)

Extract text from an image: Turn your images into a text will in seconds (this is one of my favorites) Example: OCR "Optical Character Recognition" this image and generate a text file. (Link to example)

Generate QR Codes: You can generate a completely functioning QR in seconds. Example: Create a QR code for Reddit.com and show it to me. (Link to example)

Analyze stock options: Analyze specific stock holdings and get feedback on the best plan of action via data. Example: Analyze AAPL's options expiring July 21st and highlight reward with low risk. (Link to example)

Summarize PDF docs: Code Interpreter can analyze and output an in-depth summary of an entire PDF document. Be sure not to go over the token limit (8k) Example: Conduct casual analysis on this PDF and organize information in clear manner. (Link to example)

Graph Public data: Code Interpreter can extract data from public databases and convert them into a visual chart. (Another one of my favorite use cases) Example: Graph top 10 countries by nominal GDP. (Link to example)

Graph Mathematical Functions: It can even solve a variety of different math problems. Example: Plot function 1/sin(x) (Link to example)

https://www.reddit.com/r/ChatGPT/comments/14ublwc/code_interpreter_is_the_most_powerful_version_of/
ExplainPrompt

ExplainPrompt๋Š” ์ตœ๊ทผ ์—ฐ๊ตฌ ๋…ผ๋ฌธ์˜ ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ ํ”„๋กฌํ”„ํŠธ์— ๋Œ€ํ•œ ์ž์„ธํ•œ ์•ˆ๋‚ด๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

http://explainprompt.com/
๋‹ค์Œ์€ ํ•ด์™ธ์˜ ์ƒ์„ฑ AI ํ™œ์šฉ ๊ต์œก ์‚ฌ๋ก€์ž…๋‹ˆ๋‹ค.

"๋ฐฉ๊ธˆ ์›จ์ด๋ธŒ๋ฉ”์ด์ปค ๊ธ€๋กœ๋ฒŒ๊ณผ ํ•จ๊ป˜ ๊ฐ€์žฅ ํฐ AI ํ”„๋กœ์ ํŠธ๋ฅผ ๋งˆ์ณค์Šต๋‹ˆ๋‹ค. ๊ทธ๋“ค์€ 3๊ฐœ์›” ์ „์— ์ €๋ฅผ ๊ณ ์šฉํ•˜์—ฌ ์ผ๋Ÿฌ์ŠคํŠธ๋ ˆ์ดํ„ฐ์™€ ๋””์ž์ด๋„ˆ์—๊ฒŒ ์›Œํฌํ”Œ๋กœ์— AI๋ฅผ ์ถ”๊ฐ€ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๊ฐ€๋ฅด์ณค์Šต๋‹ˆ๋‹ค. 3๊ฐœ์›” ๋งŒ์— ๊ทธ๋“ค์˜ ์—์ด์ „์‹œ(์œ ๋Ÿฝ์—์„œ ๊ฐ€์žฅ ํฐ ์—์ด์ „์‹œ ์ค‘ ํ•˜๋‚˜)๋ฅผ ์œ„ํ•œ ์‹ ์†ํ•œ ๊ฐ€์ด๋“œ๋ฅผ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค. ์ €๋Š” AI๊ฐ€ ์ผ์ž๋ฆฌ๋ฅผ ๋นผ์•—๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ํ˜„๋ช…ํ•œ ๊ธฐ์—…๋“ค์ด ์ง์›(๋Œ€๋ถ€๋ถ„ ์•„ํ‹ฐ์ŠคํŠธ)์—๊ฒŒ ์ด ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๊ต์œกํ•˜๋Š” ๋ฐ ๋ˆ์„ ์“ฐ๋Š” ๊ฒƒ์„ ์ง์ ‘ ๋ชฉ๊ฒฉํ–ˆ์Šต๋‹ˆ๋‹ค. AI๋ฅผ ์‹œ์ž‘ํ–ˆ์„ ๋•Œ ์•„ํ‹ฐ์ŠคํŠธ์™€ ํฌ๋ฆฌ์—์ดํ„ฐ๋กœ์„œ์˜ ์ง์—…์„ ์œ ์ง€ํ•˜๋ ค๋ฉด AI๋ฅผ ๋ฐฐ์›Œ์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ์•˜์Šต๋‹ˆ๋‹ค."

"์ฒ˜์Œ ์‹œ์ž‘ํ•  ๋•Œ๋Š” ๋‹ค๋ฅธ ์‚ฌ๋žŒ์„ ๊ฐ€๋ฅด์น˜๊ฒ ๋‹ค๋Š” ์ƒ๊ฐ์€ ํ•˜์ง€ ์•Š์•˜๊ณ , ๋‹จ์ง€ ์ผ์ž๋ฆฌ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ๊ฒƒ์ด๋ผ๋Š” ๊ฒƒ์„ ์•Œ์•˜๊ธฐ ๋•Œ๋ฌธ์— ์‚ด์•„๋‚จ๊ณ  ์‹ถ์—ˆ์Šต๋‹ˆ๋‹ค."

"์ด ํ”„๋กœ์ ํŠธ๋Š” ๋ชจ๋“  ๋ฉด์—์„œ ํ›Œ๋ฅญํ–ˆ์Šต๋‹ˆ๋‹ค. ์›จ์ด๋ธŒ๋ฉ”์ด์ปค์˜ ๋กœ๊ณ ๋Š” ์ฃผํ™ฉ์ƒ‰ ์›์œผ๋กœ, AI๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ๊ณผ ์œ„์น˜์— ๋ฐฐ์น˜ํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์—ฌ์ „ํžˆ ๋งŽ์€ ๋ถ€๋ถ„์ด ์ผ๋Ÿฌ์ŠคํŠธ๋ ˆ์ดํ„ฐ์˜ ์ž‘์—…๊ณผ ๋‹ค๋“ฌ๊ธฐ๊ฐ€ ํ•„์š”ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด์ œ ๊ทธ๋“ค์€ ์ด ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๊ณ  ์ €๋Š” ํ”„๋กœ์ ํŠธ์— ์ž‘๋ณ„ ์ธ์‚ฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ œ๊ฐ€ ํ•จ๊ป˜ ์ผํ•œ ํŒ€ ์ค‘ ์ตœ๊ณ ์˜ ํŒ€ ์ค‘ ํ•˜๋‚˜์˜€์Šต๋‹ˆ๋‹ค. ๋งค์ฃผ ํšŒ์˜๋ฅผ ํ•˜๋ฉด์„œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์„ ๋ฐฐ์šฐ๋˜ ํฌ๋ฆฌ์—์ดํ„ฐ๋“ค์˜ ๋ˆˆ๋น›์„ ๋ณด๋ฉฐ ์‹ ๊ธฐํ•ดํ•˜๋˜ ๋ชจ์Šต์ด ๊ทธ๋ฆฌ์šธ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค."

์ถœ์ฒ˜ https://twitter.com/icreatelife/status/1678394452157530113?s=46&t=h5Byg6Wosg8MJb4pbPSDow
Profiles of the Future

Open AI ๋‚ด๋ถ€์—์„œ ์ž‘๋…„ 11์›” ์ฆˆ์Œ ์•„์„œ ํด๋ผํฌ์˜ "Profiles of the Future"๋ฅผ DALL-E 2๋กœ ์ปค๋ฒ„ ๋””์ž์ธ์„ ํ•ด์„œ ๋น„์น˜ํ•ด ๋’€๋‚˜ ๋ด…๋‹ˆ๋‹ค.

์œ ๋ช…ํ•œ 'ํด๋ผํฌ์˜ ์‚ผ๋ฒ•์น™',

1. ์–ด๋–ค ๋…ธ๋…„์˜ ๊ณผํ•™์ž๊ฐ€ ๋ฌด์—‡์ด ๊ฐ€๋Šฅํ•˜๋ฆฌ๋ผ๊ณ  ํ•œ๋‹ค๋ฉด ๊ทธ๊ฒƒ์€ ๊ฑฐ์˜ ํ™•์‹คํžˆ ๋งž๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ทธ๊ฐ€ ๋ฌด์—‡์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๋ฆฌ๋ผ๊ณ  ํ•œ๋‹ค๋ฉด ํ‹€๋ฆด ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๋‹ค.

2. ๊ฐ€๋Šฅ์„ฑ์˜ ํ•œ๊ณ„๋ฅผ ๋ฐœ๊ฒฌํ•˜๋Š” ์œ ์ผํ•œ ๋ฐฉ๋ฒ•์€ ๋ถˆ๊ฐ€๋Šฅํ•  ๋•Œ๊นŒ์ง€ ์‹œ๋„ํ•ด ๋ณด๋Š” ๋ฐฉ๋ฒ•๋ฐ–์— ์—†๋‹ค.

3. ์ถฉ๋ถ„ํžˆ ๋ฐœ๋‹ฌํ•œ ๊ธฐ์ˆ ์€ ๋งˆ๋ฒ•๊ณผ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์—†๋‹ค.

์ค‘ 1๋ฒˆ๊ณผ 2๋ฒˆ์ด 1962๋…„์— ์—์„ธ์ด ๋ชจ์Œ์ง‘์ธ ์ด ์ฑ…์˜ 2์žฅ Hazards of prophecy : The Failure of Imagination( ์˜ˆ์–ธ์˜ ์œ„ํ—˜: ์ƒ์ƒ๋ ฅ์˜ ์‹คํŒจ )์— ์žˆ์—ˆ๊ณ , 1973๋…„์˜ ๊ฐœ์ •ํŒ์—์•ผ 3๋ฒˆ "์ถฉ๋ถ„ํžˆ ๋ฐœ๋‹ฌํ•œ ๊ธฐ์ˆ ์€ ๋งˆ๋ฒ•๊ณผ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์—†๋‹ค"์ด ๋“ฑ์žฅํ–ˆ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

https://en.wikipedia.org/wiki/Clarke%27s_three_laws

์ €๋„ ํด๋ผํฌ์˜ ์‚ผ๋ฒ•์น™๋งŒ ์•Œ์•˜์ง€ ์ด ์ฑ…์„ ์ฝ์–ด๋ณด์ง€ ๋ชปํ–ˆ๋Š”๋ฐ์š”. ์ด์ œ๋ผ๋„ ์‚ดํŽด๋ด์•ผ๊ฒ ๋„ค์š”.

OpenAI ๋ธ”๋กœ๊ทธ์˜ ๋Œ€ํ‘œ ์ด๋ฏธ์ง€๋ฅผ ๋งŒ๋“œ๋Š” Ruby Chen์ด ๋ˆ„๊ตด๊นŒ ์ฐพ์•„๋ณด๋‹ค๊ฐ€ ์ž‘์—… ์‚ฌ์ดํŠธ๋ฅผ ์•Œ๊ฒŒ ๋๋Š”๋ฐ, ๊ฑฐ๊ธฐ์— ์–ธ๊ธ‰์ด ์žˆ๋Š”๊ฑธ ๊น€์„ฑ์™„๋‹˜์ด ๋ฐœ๊ฒฌํ•ด์„œ ์ข€ ๋” ์ฒดํฌํ•ด ๋ดค์Šต๋‹ˆ๋‹ค.

Ruby Chen: https://rubywjchen.com

* Ruby Chen์€ "Original novel by Arthur C. Clarke repackaged for limited internal publication at OpenAI. Cover artwork is co-created with DALLยทE 2, a text-to-image AI system." ์ด๋ผ๊ณ  ์ผ๋Š”๋ฐ, ์—์„ธ์ด ๋ชจ์Œ์ง‘์ด์ง€ ์†Œ์„ค๋กœ ๋ณด๊ธด ์–ด๋ ต๊ฑฐ๋“ ์š”. (ํ˜น์‹œ ๋ชจ์Œ์ง‘ ์†์— ์†Œ์„ค์ธ ์ฑ•ํ„ฐ๊ฐ€ ์žˆ์—ˆ์„๊นŒ์š”?) ์–ด์ฉŒ๋ฉด ์ฑ… ํ‘œ์ง€๋งŒ ๋””์ž์ธํ•˜๊ณ  ๋‚ด์šฉ์€ ์‚ดํŽด๋ณด์ง€ ์•Š์•˜์„์ง€๋„์š”.

* GPT-4์˜ ์†Œ๊ฐœ:
----
"Profiles of the Future: An Inquiry into the Limits of the Possible"๋Š” ์•„์„œ C. ํด๋ผํฌ๊ฐ€ ์ €์ˆ ํ•œ ์ฑ…์ž…๋‹ˆ๋‹ค. ์ด ์ฑ…์€ ์›๋ž˜ 1962๋…„์— ์ถœ๊ฐ„๋˜์—ˆ์œผ๋‚˜, ํด๋ผํฌ๋Š” ๊ทธ ํ›„์—๋„ ์—ฌ๋Ÿฌ ์ฐจ๋ก€์— ๊ฑธ์ณ ์ฑ…์„ ์—…๋ฐ์ดํŠธํ•˜์˜€์Šต๋‹ˆ๋‹ค.

์ด ์ฑ…์˜ ์ฃผ์š” ์ฃผ์ œ๋Š” ๊ฐ€๋Šฅํ•œ ๋ฏธ๋ž˜ ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ํƒ๊ตฌ์ด๋ฉฐ, ๊ณผํ•™ ๊ธฐ์ˆ ์ด ์–ด๋–ป๊ฒŒ ๋ฐœ์ „ํ•  ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•œ ์˜ˆ์ธก๊ณผ ๊ด€์ฐฐ์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค. ํด๋ผํฌ๋Š” ์ด ์ฑ…์—์„œ "๋งค์šฐ ํ™•์‹คํ•˜๊ฒŒ ์•Œ๊ณ  ์žˆ๋Š”" ๊ฒƒ๋ถ€ํ„ฐ "์ ˆ๋Œ€๋กœ ๋ถˆ๊ฐ€๋Šฅํ•œ" ๊ฒƒ์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ๋‹ค์–‘ํ•œ ๋ฏธ๋ž˜์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋…ผ์˜ํ•˜๋ฉฐ, ๊ทธ์˜ ์˜ˆ์ธก์€ ์ข…์ข… ๋†€๋ž๋„๋ก ์ •ํ™•ํ•˜๊ฒŒ ๋“œ๋Ÿฌ๋‚ฌ์Šต๋‹ˆ๋‹ค.

๊ทธ๋Š” ํ–ฅํ›„ ์šฐ๋ฆฌ๊ฐ€ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋Š” ์ผ๋ถ€ ๊ธฐ์ˆ ์  ๋ฐœ์ „์„ ์ƒ์„ธํ•˜๊ฒŒ ์„ค๋ช…ํ•˜์˜€๊ณ , ์ด์—๋Š” ํ†ต์‹  ์œ„์„ฑ, ๊ฐœ์ธ์šฉ ์ปดํ“จํ„ฐ, ์ธํ„ฐ๋„ท, ๊ทธ๋ฆฌ๊ณ  ๋‹ค๋ฅธ ํ˜์‹ ์ ์ธ ๊ธฐ์ˆ ๋“ค์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค. ์ด ์™ธ์—๋„ ํด๋ผํฌ๋Š” ๊ณผํ•™๊ณผ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์ด ์ธ๋ฅ˜์—๊ฒŒ ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น ์ง€์— ๋Œ€ํ•ด ์‹ฌ๋„์žˆ๊ฒŒ ํƒ๊ตฌํ•˜์˜€์Šต๋‹ˆ๋‹ค.

ํด๋ผํฌ์˜ ๋˜ ๋‹ค๋ฅธ ์ค‘์š”ํ•œ ์ฃผ์žฅ ์ค‘ ํ•˜๋‚˜๋Š” ๊ทธ์˜ ์œ ๋ช…ํ•œ "ํด๋ผํฌ์˜ ์„ธ ๊ฐ€์ง€ ๋ฒ•์น™"์ด ์ฑ…์—์„œ ์ œ์‹œ๋œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ์ค‘ ๊ฐ€์žฅ ์œ ๋ช…ํ•œ ๋ฒ•์น™์€ "์ถฉ๋ถ„ํžˆ ๋ฐœ์ „๋œ ๊ธฐ์ˆ ์€ ๋งˆ๋ฒ•๊ณผ ๊ตฌ๋ณ„ํ•  ์ˆ˜ ์—†๋‹ค"๋Š” ๋‚ด์šฉ์˜ ์„ธ ๋ฒˆ์งธ ๋ฒ•์น™์ž…๋‹ˆ๋‹ค.

์š”์•ฝํ•˜์ž๋ฉด, "Profiles of the Future"๋Š” ๋ฏธ๋ž˜์˜ ๊ณผํ•™๊ณผ ๊ธฐ์ˆ  ๋ฐœ์ „์— ๋Œ€ํ•œ ํ†ต์ฐฐ์ ์ธ ์˜ˆ์ธก๊ณผ ๊ณ ์ฐฐ์„ ์ œ๊ณตํ•˜๋Š” ์ฑ…์ž…๋‹ˆ๋‹ค. ์ด ์ฑ…์„ ํ†ตํ•ด ํด๋ผํฌ์˜ ๋›ฐ์–ด๋‚œ ์ƒ์ƒ๋ ฅ๊ณผ ๋ฏธ๋ž˜์— ๋Œ€ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
----

1945: ์šฐ๋ฆฌ๊ฐ€ ์ƒ๊ฐํ•˜๋Š” ๋Œ€๋กœ (๋ฐฐ๋‹ˆ๋ฐ” ๋ถ€์‹œ)
1960: ์ธ๊ฐ„-์ปดํ“จํ„ฐ ๊ณต์ƒ (J. C. R. ๋ฆฌํด๋ผ์ด๋”)
1962: ์Šค์ผ€์น˜ํŒจ๋“œ - ์ธ๊ฐ„-๊ธฐ๊ณ„ ๊ทธ๋ž˜ํ”ผ์ปฌ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ์‹œ์Šคํ…œ (์•„์ด๋ฐ˜ ์„œ๋œ๋žœ๋“œ)
1962: ๋ฏธ๋ž˜์˜ ํ”„๋กœํŒŒ์ผ (์•„์„œ ํด๋ผํฌ)
1968: ๋ชจ๋“  ๋ฐ๋ชจ์˜ ์–ด๋จธ๋‹ˆ (๋”๊ธ€๋Ÿฌ์Šค ์—ฅ๊ฒ”๋ฐ”ํŠธ)

์ˆœ์œผ๋กœ ์ œ๊ฐ€ ์—ผ๋‘์— ๋‘๋Š” ํƒ€์ž„๋ผ์ธ์— 1962๋…„์„ ์—…๋ฐ์ดํŠธํ•ด ๋‘ฌ์•ผ ๊ฒ ์Šต๋‹ˆ๋‹ค.

1, 2 ์ฑ•ํ„ฐ์ธ "์˜ˆ์–ธ์˜ ์œ„ํ—˜", "์‹ ๊ฒฝ์˜ ์‹คํŒจ"์™€ "์ƒ์ƒ๋ ฅ์˜ ์‹คํŒจ"๋Š” ๊ผญ ์ฝ์–ด๋ด์•ผ๊ฒ ์Šต๋‹ˆ๋‹ค.

* 2011๋…„ ๊ฐ€๋””์–ธ์˜ Profiles of the Future ๋ฆฌ๋ทฐ: https://www.theguardian.com/science/2011/mar/04/profiles-future-arthur-clarke-review

* ๊ด€๋ จ ๊ธ€ - ๋ฐฐ๋‹ˆ๋ฐ” ๋ถ€์‹œ์˜ "์šฐ๋ฆฌ๊ฐ€ ์ƒ๊ฐํ•˜๋Š” ๋Œ€๋กœ" (2023. 2. 26.): https://www.facebook.com/seungjoon.choi/posts/pfbid02keT8ujX2z4NtgpscPCFPb5Jkh8GT8GwE6WEeVNNJr4pDD4u4CYA312dARMhrERuyl

* ๊ด€๋ จ ๊ธ€ - ๋ฆฌํด๋ผ์ด๋”์˜ "์ธ๊ฐ„-์ปดํ“จํ„ฐ ๊ณต์ƒ" (2023. 2. 26.): https://www.facebook.com/seungjoon.choi/posts/pfbid02ZGiKPRAWhmDiZLTEnUFHaukLL9XTcPMoUnV5krHKpzfHoB6fAyiKXkSGFuFuLkQxl

* ๊ด€๋ จ ๊ธ€ - ํ”ผํ„ฐ ๋…ธ๋น…์˜ "์šฐ๋ฆฌ๊ฐ€ ํ”„๋กœ๊ทธ๋žจํ•˜๋Š” ๋Œ€๋กœ" (2023. 3. 20.): https://www.facebook.com/seungjoon.choi/posts/pfbid02VfgfGGxmxu96Dvj8DjXedBxK5Yygnf7YNZFrzxAUbb5Ps39USBWuoqV35wQPFD1Dl