Continuous Learning_Startup & Investment
2.43K subscribers
513 photos
5 videos
16 files
2.74K links
We journey together through the captivating realms of entrepreneurship, investment, life, and technology. This is my chronicle of exploration, where I capture and share the lessons that shape our world. Join us and let's never stop learning!
Download Telegram
Andrej๋„ Reflection์— ๋Œ€ํ•ด์„œ ์ด์•ผ๊ธฐํ–ˆ๋Š”๋ฐ Jim Fan๋„ ์ด์•ผ๊ธฐํ•˜๋„ค์š” ใ…Žใ…Ž

GPT-4์—๋Š” ๋‹ค๋ฅธ ์–ด๋–ค ๋ชจ๋ธ๋ณด๋‹ค ๋งค์šฐ ์œ ์šฉํ•˜๊ณ  ๊ฐ•๋ ฅํ•œ ๊ธฐ๋Šฅ์ธ ์…€ํ”„ ๋””๋ฒ„๊ทธ ๊ธฐ๋Šฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค.

์•„๋ฌด๋ฆฌ ์ˆ™๋ จ๋œ ์ธ๊ฐ„ ํ”„๋กœ๊ทธ๋ž˜๋จธ๋ผ๋„ ์ฒซ ๋ฒˆ์งธ ์‹œ๋„์—์„œ ํ•ญ์ƒ ํ”„๋กœ๊ทธ๋žจ์„ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ๋งŒ๋“ค ์ˆ˜๋Š” ์—†์Šต๋‹ˆ๋‹ค. ์‹คํ–‰ ๊ฒฐ๊ณผ๋ฅผ ์‚ดํŽด๋ณด๊ณ , ๋ฌด์—‡์ด ์ž˜๋ชป๋˜์—ˆ๋Š”์ง€ ์ถ”๋ก ํ•˜๊ณ , ์ˆ˜์ • ์‚ฌํ•ญ์„ ์ ์šฉํ•˜๊ณ , ํ—น๊ตฌ๊ณ , ๋ฐ˜๋ณตํ•ฉ๋‹ˆ๋‹ค. ์—์ด์ „ํŠธ ๋ฃจํ”„๋Š” ํ™˜๊ฒฝ์˜ ํ”ผ๋“œ๋ฐฑ์„ ๋ฐ›์•„ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ฝ”๋“œ๋ฅผ ๊ฐœ์„ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์ด ๋…ผ๋ฌธ์„ ์ ๊ทน ์ถ”์ฒœํ•ฉ๋‹ˆ๋‹ค: โ€œ์ฝ”๋“œ ์ƒ์„ฑ์„ ์œ„ํ•œ GPT ์…€ํ”„ ๋ฆฌํŽ˜์–ด ์ดํ•ดํ•˜๊ธฐโ€œ(๋‹ค๋ฅธ LLM๊ณผ ๋น„๊ตํ•˜์—ฌ GPT-4์˜ ์…€ํ”„ ๋””๋ฒ„๊ทธ ๊ธฐ๋Šฅ์„ ์ •๋Ÿ‰ํ™”ํ•œ ๋ฌธ์„œ)๋ฅผ ์ ๊ทน ์ถ”์ฒœํ•ฉ๋‹ˆ๋‹ค. ๋ช‡ ๊ฐ€์ง€ ์ฃผ์š” ๊ฒฐ๊ณผ

GPT-4๊ฐ€ ์ž๊ฐ€ ๋ณต๊ตฌ๊ฐ€ ๊ฐ€๋Šฅํ•œ ํ•ต์‹ฌ ์ด์œ ๋Š” ๊ฐ•๋ ฅํ•œ ํ”ผ๋“œ๋ฐฑ ๊ธฐ๋Šฅ์ž…๋‹ˆ๋‹ค. ์ฝ”๋“œ์— ๋ฌด์—‡์ด ์ž˜๋ชป๋˜์—ˆ๋Š”์ง€๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์Šค์Šค๋กœ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค๋ฅธ ์–ด๋–ค ๋ชจ๋ธ๋„ ๋”ฐ๋ผ์˜ฌ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
ํ”ผ๋“œ๋ฐฑ ๋ชจ๋ธ๊ณผ ์ฝ”๋“œ ์ƒ์„ฑ ๋ชจ๋ธ์ด ๊ฐ™์„ ํ•„์š”๋Š” ์—†์Šต๋‹ˆ๋‹ค. ์‚ฌ์‹ค ํ”ผ๋“œ๋ฐฑ ๋ชจ๋ธ์ด ๋ณ‘๋ชฉํ˜„์ƒ์ž…๋‹ˆ๋‹ค.
GPT-3.5๋Š” GPT-4์˜ ํ”ผ๋“œ๋ฐฑ์„ ๋ฐ›์œผ๋ฉด ํ›จ์”ฌ ๋” ์ข‹์€ ์ฝ”๋“œ๋ฅผ ์ž‘์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
GPT-4 ์ž์ฒด๋„ ์ „๋ฌธ๊ฐ€์˜ ํ”ผ๋“œ๋ฐฑ์„ ๋ฐ›์œผ๋ฉด ํ›จ์”ฌ ๋” ์ข‹์€ ์ฝ”๋“œ๋ฅผ ์ž‘์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Paper: Demystifying GPT Self-Repair for Code Generation
Link: https://arxiv.org/abs/2306.09896
Authors: Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, Armando Solar-Lezama

OpenAI๋Š” ๋งŽ์€ ์†Œํ”„ํŠธ์›จ์–ด ์—”์ง€๋‹ˆ์–ด๋ฅผ ๊ต์‚ฌ๋กœ ๊ณ ์šฉํ•˜์—ฌ ๋‹ค์Œ GPT๋ฅผ ๊ต์œกํ•˜๊ณ  ์žˆ์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋งค์šฐ ๋†’์Šต๋‹ˆ๋‹ค. ๊ทธ๋“ค์€ ์ƒ์„ฑํ•  ํ•„์š”๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค. ๋น„ํ‰๋งŒ ์žˆ์œผ๋ฉด ๋ฉ๋‹ˆ๋‹ค.
Why transformative artificial intelligence is really, really hard to achieve
1. The transformational potential of AI is constrained by its hardest problems
2. Despite rapid progress in some AI subfields, major technical hurdles remain
3. Even if technical AI progress continues, social and economic hurdles may limit its impact

Source:https://thegradient.pub/why-transformative-artificial-intelligence-is-really-really-hard-to-achieve/

Thought

1. The transformational potential of AI is constrained by its hardest problems
=> AI๋กœ ํŠน์ • ๋ถ€๋ถ„์„ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์œผ๋‚˜ ๋‹ค๋ฅธ ๋ถ€๋ถ„๋“ค๋กœ ์ธํ•ด ๋ณ‘๋ชฉ์ด ์ƒ๊ธธ๊ฑฐ๋ผ๊ณ  ๋งํ–ˆ๋Š”๋ฐ ๊ทผ๊ฑฐ๊ฐ€ ๋งŽ์ด ๋นˆ์•ฝํ•ด์„œ ์„ค๋“๋˜์ง€ ์•Š๋„ค์š”. ์˜คํžˆ๋ ค ํ•˜๋‚˜์˜ Breakthrough๊ฐ€ ๋‚˜์˜ค๋ฉด ์ƒˆ๋กœ์šด ๋ฌธ์ œ๋„ ๋” ๋นจ๋ฆฌ ํ’€์ง€ ์•Š์œผ๋ ค๋‚˜์š”?

2. Despite rapid progress in some AI subfields, major technical hurdles remain
- ๋กœ๋ด‡ ๊ณตํ•™ ์†๋„๊ฐ€ ๋А๋ฆฌ๊ณ  Open AI๋„ ๋กœ๋ด‡ ๊ณตํ•™ ํŒ€์„ ํ•ด์ฒดํ–ˆ๋‹ค. -> OpenAI disbanded its robotic team because it found you could do all your training in a simulation, and it would work just fine. ์ด๋Ÿฐ ์˜๊ฒฌ๋„ ์žˆ๊ณ  ์ €๋„ ๋น„์Šทํ•ฉ๋‹ˆ๋‹ค. Tesla๋Š” ์™œ ๋กœ๋ด‡์„ ๋งŒ๋“œ๋‚˜์š”? ใ…Žใ…Ž
- ๋‹ค๋ฅธ ๋…ผ๋ฆฌ๋“ค์€ ์™„์ „ ๊ณต๊ฐํ•ฉ๋‹ˆ๋‹ค.
2.1. The continued falling cost of computation could help. But we may have exhausted the low-hanging fruit in hardware optimization and are now entering an era of deceleration. Mooreโ€™s Law has persisted under various guises, but the critical factor for transformative AI may be whether we will reach it before Moore's Law stops.
2.2. Next look at data. Villalobos et al. warns that high quality language data may run out by 2026. The team suggests data efficiency and synthetic data as ways out, but so far these are far from complete solutions as Shumailov et al. shows.
2.3. Millions of humans currently annotate data to train models. Their humanity, especially their expert knowledge and creative spark, becomes more valuable by the day. The Verge reports: โ€œOne engineer told me about buying examples of Socratic dialogues for up to $300 a pop. โ€œSince we are trying to behave in accord with peopleโ€™s values, the most important data will be data from humans about their values.โ€

-> ๊ณผ๊ฑฐ Annotation Startup์ด ๋‚˜์˜จ ๊ฒƒ์ฒ˜๋Ÿผ ์ƒˆ๋กœ์šด ๊ธฐํšŒ๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค. ใ…Žใ…Ž Human feedback market place๊ฐ€ ๋‚˜์˜ฌ ๊ฒƒ ๊ฐ™์•„์š” ใ…Žใ…Ž
-> Process knowledge is the kind of knowledge thatโ€™s hard to write down as an instruction. You can give someone a well-equipped kitchen and an extraordinarily detailed recipe, but unless he already has some cooking experience, we shouldnโ€™t expect him to prepare a great dish.
-> ์ด ๋ง์—๋„ ๊ณต๊ฐ์€ ํ•˜์ง€๋งŒ ๋‹ค๋ฅธ ์ƒ๊ฐ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”๋ฐ์š”. ์นด๋ฉ”๋ผ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „๊ณผ Social media ๋•๋ถ„์— Instagram์€ ํ•˜๋ฃจ์—๋„ 10์–ต์žฅ์˜ ์‚ฌ์ง„์„ ๋งŒ๋“ค์–ด๋‚ด๊ณ  ์žˆ๋Š”๋ฐ์š”. AI ๊ธฐ๋ฐ˜์˜ ์ƒˆ๋กœ์šด ์„œ๋น„์Šค/ํ”„๋Ÿฌ๋•์ด ์ธ๋ฅ˜๊ฐ€ ๋””์ง€ํ„ธ์— ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฐ์ดํ„ฐ ์ˆ˜๋ฅผ ์••๋„์ ์œผ๋กœ ๋Š˜๋ฆด ์ˆ˜ ์žˆ๋‹ค๋Š” ํฌ๋งํšŒ๋กœ๋ฅผ ๋Œ๋ฆฌ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค ใ…Žใ…Ž

3. Even if technical AI progress continues, social and economic hurdles may limit its impact
๊ทœ์ œ๊ฐ€ ๋ถ„๋ช…ํžˆ ๊ธฐ์ˆ  ๋ฐœ์ „์˜ ์†๋„๋ฅผ ๋Šฆ์ถœ ๊ฒƒ์ด์ง€๋งŒ, ๊ธ€๋กœ๋ฒŒํ•˜๊ฒŒ ํ˜์‹ ์„ ์ด‰์ง„ํ•œ ๋‚˜๋ผ์™€ ๊ทธ๋ ‡์ง€ ์•Š์€ ๋‚˜๋ผ์˜ ์ฐจ์ด๋Š” ์ปค์งˆ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.

- AI ๋ฌธ์ œ ์ด์•ผ๊ธฐ์ธ๋ฐ ์™œ ๋Œ€ํ•œ๋ฏผ๊ตญ์ด ์ƒ๊ฐ๋‚ ๊นŒ์š”โ€ฆํ•œ๊ตญ์€ํ–‰ ์ด์žฌ๋‹˜์ด ํ•˜์‹ ๋ง์”€์ด ์ƒ๊ฐ๋‚˜๋„ค์š”..
์šฐ์„  ์ง€๊ธˆ ๋ง์”€ํ•˜์‹ , ์ง€๊ธˆ ์šฐ๋ฆฌ๊ฐ€ ๋‹จ๊ธฐ์ ์œผ๋กœ ๊ฒฝ์ œ ์„ฑ์žฅ์„ ๋‚ฎ์ถ˜ ๋ฌธ์ œ๋Š” ์ด ๋ฌธ์ œํ•˜๊ณ ๋Š” ๊ด€๋ จ์ด ์—†์ง€๋งŒ, ๊ธฐ์ž๋‹˜ ๋ง์”€ํ•˜์‹ ๋Œ€๋กœ ์šฐ๋ฆฌ๋‚˜๋ผ๊ฐ€ ์ง€๊ธˆ์˜ ๊ณ ์ธํ”Œ๋ ˆ์ด์…˜์ด ์‹œ๋Œ€๊ฐ€ ์ง€๋‚˜๋ฉด ์†Œ์œ„ ์–˜๊ธฐ๋Š” secular stagnation, ์žฅ๊ธฐ ์ €์„ฑ์žฅ๊ตฌ์กฐ๋กœ ๊ฐˆ ๊ฑฐ๋ƒ๋ผ๋Š” ๋…ผ์˜๊ฐ€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๊ณ  ์žˆ๋Š”๋ฐ ๊ฐœ์ธ์ ์œผ๋กœ๋Š” ์ด๋ฏธ ์šฐ๋ฆฌ๋‚˜๋ผ๋Š” ์žฅ๊ธฐ ์ €์„ฑ์žฅ๊ตฌ์กฐ๋กœ ์™€์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค. ์™œ๋ƒ๋ฉด ์ €์ถœ์‚ฐ๊ณผ ๊ณ ๋ นํ™”๊ฐ€ ์›Œ๋‚™ ์‹ฌํ•ด์„œ์š”. ์ด ํฐ ํŠธ๋žœ๋“œ๋ฅผ ๋ฒ—์–ด๋‚˜๊ธฐ์—๋Š” ์ด๋ฏธ ์™€ ์žˆ๋Š” ํ˜„์‹ค๋กœ ๋ณด๊ณ  ๋นจ๋ฆฌ ์—ฌ๊ธฐ์— ๋Œ€ํ•œ ๋Œ€์‘์„ ํ•ด์•ผ๋œ๋‹ค๊ณ  ์ƒ๊ฐํ•˜๊ณ  ์žˆ๊ณ ์š”. ์ง€๊ธˆ ํ˜„์žฌ๋Š” ๋‚ฎ์€ ์„ฑ์žฅ๋ฅ  ๋•Œ๋ฌธ์— ์ฒญ๋…„ ์‹ค์—…, ๋น„์ •๊ทœ์ง ๋ฌธ์ œ, ์ด๋Ÿฐ ๊ฒƒ์ด ๋” ์‚ฌํšŒ์ ์œผ๋กœ ๋งŽ์€ ๋ฌธ์ œ๊ฐ€ ๋˜๊ณ  ์žˆ๋Š”๋ฐ, 5๋…„, 10๋…„ ๋‚ด์—๋Š” ๋…ธํ›„ ๋นˆ๊ณค ๋ฌธ์ œ๊ฐ€ ๊ต‰์žฅํžˆ ํฐ ์‚ฌํšŒ ๋ฌธ์ œ๊ฐ€ ๋  ๊ฑฐ๋ผ๊ณ  ์ƒ๊ฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์ด๋ฏธ ์™€ ์žˆ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋ฉด ๊ธฐ์ž๋‹˜ ๋ง์”€ํ•˜์‹  ๋Œ€๋กœ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๊ตฌ์กฐ๊ฐœํ˜, ๋…ธ๋™, ์—ฐ๊ธˆ, ๊ต์œก์„ ํ†ตํ•ด์„œ๋Š” ์ด๋Ÿฐ ๊ตฌ์กฐ๊ฐœํ˜์ด ์ •๋ง ํ•„์š”ํ•œ๋ฐ, ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๋ฌธ์ œ๋Š” ์–ด๋–ป๊ฒŒ ํ•ด๊ฒฐํ• ์ง€๋ฅผ ๋ชจ๋ฅด๋Š” ๊ฒŒ ๋ฌธ์ œ๊ฐ€ ์•„๋‹ˆ๊ณ ์š”. ์ด๋Ÿฐ ๊ฐœํ˜์„ ํ•ด์•ผ๋œ๋‹ค๋Š” ๊ฒƒ์„ ์•Ž์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ดํ•ด๋‹น์‚ฌ์ž ๊ฐ„์˜ ์‚ฌํšŒ์  ํƒ€ํ˜‘์ด ๋„ˆ๋ฌด ์–ด๋ ค์›Œ๊ฐ€์ง€๊ณ  ์ด๊ฒŒ ์ง„์ฒ™์ด ์•ˆ ๋˜๊ณ  ์žˆ๋Š” ๊ฒƒ, ํŠนํžˆ ์ด๋Ÿฐ ๋…ผ์˜๋ฅผ ํ•  ๋•Œ ํ˜œํƒ์„ ๋ณด๋Š” ์ˆ˜์š”์ž๊ฐ€ ์•„๋‹ˆ๋ผ ๊ณต๊ธ‰์ž ์ค‘์‹ฌ์œผ๋กœ ๋ชจ๋“  ๋…ผ์˜๊ฐ€ ๋งŽ์ด ๋˜๊ณ  ์žˆ๋Š” ๊ฒƒ, ์ด๋Ÿฐ ๋ฌธ์ œ ๋•Œ๋ฌธ์— ์ง€๊ธˆ ํ•œ ๋ฐœ์ง๋„ ๋ชป ๋‚˜๊ฐ€๊ณ  ์žˆ๋‹ค๋Š” ๊ฒŒ ์•ˆํƒ€๊น์Šต๋‹ˆ๋‹ค. ์ด๊ฒƒ์€ ์ •๋ถ€๋ฌธ์ œ๊ฐ€ ์•„๋‹ˆ๊ณ ์š”. ์–ด๋–ค ํŠน์ •์  ๋ฌธ์ œ๊ฐ€ ์•„๋‹ˆ๋ผ ์šฐ๋ฆฌ ์‚ฌํšŒ์˜ ๋ฌธ์ œ์ธ๋ฐ, ์ œ๊ฐ€ ์˜ˆ๋ฅผ ๋ช‡ ๊ฐœ ๋“ค๋ฉด ์šฐ๋ฆฌ๊ฐ€ ๊ต์œก๊ฐœํ˜ ํ•˜๋ ค๊ณ  ๊ทธ๋Ÿฌ๋ฉด ์ €๋Š” ์ œ์ผ ๊ฐ€์Šด ์•„ํ”ˆ ๊ฒƒ์ด ์™ธ๊ตญ์—์„œ ์˜ค๋ž˜์žˆ๋‹ค ๋ณด๋‹ˆ๊นŒ, ์šฐ๋ฆฌ๋Š” ๊ณ 3๋•Œ ์ž๊ธฐ๊ฐ€ ํ‰์ƒ ํ•ด์•ผ ํ•  ์ „๊ณต์„ ์ •ํ•˜์ž–์•„์š”. ๋ง์ด ์•ˆ ๋˜๋Š” ๊ฑฐ์ง€์š”. ์‚ฌ์‹ค ๋Œ€ํ•™๊ฐ€์„œ ์—ฌ๋Ÿฌ ๊ฐœ ๋ณด๊ณ  ๊ฒฐ์ •ํ•ด์•ผ ๋˜๋Š”๋ฐ ๊ฐ ํ•™๊ณผ์˜ ์ •์›, ์ด๋Ÿฐ ๊ฒƒ์€ ๋‹ค ๊ณต๊ธ‰์ž๊ฐ€ ์ •ํ•˜๊ณ  ์ดํ•ด๋‹น์‚ฌ์ž๊ฐ€ ํ•ฉ์˜๋ฅผ ๋ชป ๋ณด๋‹ˆ๊นŒ ํ•˜๋‚˜๋„ ์›€์ง์ด์ง€ ๋ชปํ•˜๊ณ  ์žˆ๊ณ , ์—ฐ๊ธˆ๊ฐœํ˜๋„ ๋„ˆ๋ฌด ์ค‘์š”ํ•˜๊ณ  ํ”„๋ž‘์Šค๋„ ์‚ฌํšŒ์ ์œผ๋กœ ํฐ ๊ฐˆ๋“ฑ์ด ์žˆ์ง€๋งŒ ๊ฑฐ๊ธฐ๋Š” ๊ทธ๋ž˜๋„ ์‹œ์ž‘์ด๋ผ๋„ ํ–ˆ๋Š”๋ฐ ์šฐ๋ฆฌ๋Š” ์—ฐ๊ธˆ๊ฐœํ˜์œ„์›ํšŒ ๋งŒ๋“ค์–ด์„œ ์—ฌ๋Ÿฌ ์ •๋ถ€๊ฐ€ ํ–ˆ์ง€๋งŒ ๋ชจ์ˆ˜์— ๋Œ€ํ•ด์„œ๋Š” ์„ผ์‹œํ‹ฐ๋ธŒํ•˜๋‹ˆ๊นŒ ๋ชจ์ˆ˜ ๋‹ค ๋นผ๊ณ  ์–˜๊ธฐํ•˜์ž, ๊ทธ๋Ÿฌ๋ฉด ํ•˜์ง€ ๋ง์ž๋Š” ์–˜๊ธฐ๋ž‘ ๋น„์Šทํ•˜๊ฒŒ ๋“ค๋ฆด ์ˆ˜๋„ ์žˆ๊ณ , ์ €์ถœ์‚ฐ, ๋…ธ์ธ ๋Œ๋ณด๋ฏธ ์ด๋Ÿฐ ๊ฒƒ์„ ์ƒ๊ฐํ•˜๋ฉด ์‚ฌ์‹ค ์ด๋ฏผ์ด๋ผ๋“ ์ง€ ํ•ด์™ธ ๋…ธ๋™์ž๋ฅผ ์–ด๋–ป๊ฒŒ ํ™œ์šฉํ• ์ง€์— ๋Œ€ํ•œ ๋…ผ์˜๋„ ๊ต‰์žฅํžˆ ํ•„์š”ํ•œ๋ฐ, ๊ทธ๋Ÿฌ๋ฉด ๊ทธ๋Ÿด ๋•Œ๋Š” ์ž„๊ธˆ์ฒด๊ณ„๋Š” ์–ด๋–ป๊ฒŒ ํ•  ๊ฑฐ๋ƒ ์ด๋Ÿฐ ๊ฒƒ๋„ ํ•„์š”ํ•œ๋ฐ ๊ตญ๋‚ด์™ธ ๋…ผ์Ÿ์— ๋งž๋ฌผ๋ ค์„œ ๊ทธ๋Ÿฐ ๋…ผ์˜๋„ ์ง„์ฒ™์ด ์—†๊ณ , ์šฐ๋ฆฌ๋‚˜๋ผ ์ˆ˜์ถœ๋„ ๋ฐ˜๋„์ฒด ์ˆ˜์ถœ์ด ์•ˆ ๋œ๋‹ค๊ณ  ๋ง‰ ๊ทธ๋Ÿฌ๋Š”๋ฐ ์‚ฌ์‹ค ์šฐ๋ฆฌ๋‚˜๋ผ์—์„œ ์ œ๊ฐ€ ๋ณผ ๋•Œ ์„œ๋น„์Šค์—… ์ƒ๊ฐํ•˜๋ฉด ์ˆ˜์ถœ ์—„์ฒญ๋‚˜๊ฒŒ ํ•  ๊ฒŒ ๋งŽ๊ฑฐ๋“ ์š”. ๋ง์ด ๊ธธ์–ด์ ธ์„œ ๋ฏธ์•ˆํ•˜์ง€๋งŒ ์ œ๊ฐ€ ๊ฐ€์Šด์œผ๋กœ ๋А๋ผ๋Š” ๊ฒ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋‚˜๋ผ ๊ฒฝ์Ÿ๋ ฅ์œผ๋กœ ๋”ฐ์ง€๋ฉด, ๊ณตํ•ญ์—์„œ ํŽธ์˜์ ์—์„œ ํ•œ ์‚ฌ๋žŒ์˜ ๋…ธ๋™์ž๊ฐ€ ํ•˜๋Š” ๊ฒƒํ•˜๊ณ  ์™ธ๊ตญ ๊ฐ€์„œ 20๋ถ„ ๊ฑธ๋ฆฌ๋ฉด์„œ ๊ฒฐ์ œํ•˜๋Š” ๊ฒƒ์„ ๋ณด๋ฉด ์šฐ๋ฆฌ์˜ ๊ฒฝ์Ÿ๋ ฅ์ด ์–ด๋”” ์žˆ๋Š”์ง€ ์•Œ ์ˆ˜ ์žˆ๊ฑฐ๋“ ์š”? ํŠนํžˆ ์šฐ๋ฆฌ ์˜๋ฃŒ์‚ฐ์—… ์–ผ๋งˆ๋‚˜ ๋งŽ์ด ๋ฐœ์ „ํ–ˆ์Šต๋‹ˆ๊นŒ. ์ €๋Š” 10๋…„ ์ „๋ถ€ํ„ฐ ์˜๋ฃŒ์‚ฐ์—…์˜ ๊ตญ์ œํ™”๋ฅผ ํ†ตํ•ด์„œ ์„œ๋น„์Šค ์‚ฐ์—… ๋ฐœ์ „ํ•˜์ž๊ณ  ๊ทธ๋žฌ๋Š”๋ฐ ํ•œ ๊ฑธ์Œ๋„ ๋ชป ๊ฐ€๋Š” ์‚ฌ์ด์— ํƒœ๊ตญ๊ณผ ์‹ฑ๊ฐ€ํฌ๋ฅด์— ๊ฐ€๋ฉด ์ด๋ฏธ ์ง€์—ญ์— ์˜๋ฃŒ ํ—ˆ๋ธŒ๊ฐ€ ๋˜์–ด ์žˆ๊ณ , ๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๊ฐ€ ๋‹ค ์•„๋Š” ์ด๋Ÿฐ ๋งŽ์€ ๊ฐœํ˜์ด ๊ทธ๊ฒƒ์„ ๋ชป ํ•˜๋‹ค๋ณด๋‹ˆ๊นŒ ๊ฒฝ์ œ๊ฐ€ ์ข€ ๋‚˜๋น ์ง€๋ฉด ๋‹ค ์ด๊ฒŒ, ํ•œ์€ ์ด์žฌ๊ฐ€ ์™œ ์ด๋Ÿฐ ์–˜๊ธฐํ•˜๋ƒ๊ณ  ์‹ ๋ฌธ์— ๋‚˜๋ฉด ํ•œ์€ ์ด์žฌ๊ฐ€ ํ†ตํ™”์ •์ฑ…์— ๊ด€์‹ฌ์—†์ด ์ด๋Ÿฐ ์–˜๊ธฐ๋งŒ ํ•ด ์ด๋ ‡๊ฒŒ ๋‚˜์˜ฌ ๊ฒƒ ๊ฐ™์€๋ฐ, ์ด๊ฒŒ ์šฐ๋ฆฌ์™€ ๊ด€๋ จ๋ฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ๊ตฌ์กฐ์ ์œผ๋กœ ์–ด๋ ค์šด ๊ฒƒ์„ ํ•ด๊ฒฐ ๋ชป ํ•˜๋‹ˆ๊นŒ ๊ฒฐ๊ตญ์€ ๋ญ๋ƒ, ์žฌ์ •์œผ๋กœ ๋ˆ ํ’€์–ด์„œ ํ•ด๊ฒฐํ•ด๋ผ, ๊ธˆ๋ฆฌ ๋‚ฎ์ถฐ์„œ ํ•ด๊ฒฐํ•ด๋ผ, ์ด๋ ‡๊ฒŒ ํ†ตํ™”์ •์ฑ…๊ณผ ์žฌ์ •์ •์ฑ…์œผ๋กœ ์ด ๋ถ€๋‹ด์ด ๋‹ค ์˜ค๊ฑฐ๋“ ์š”. ์ ˆ๋Œ€๋กœ ๊ทธ๋ž˜์„œ๋Š” ์•ˆ๋ฉ๋‹ˆ๋‹ค. ์ œ๊ฐ€ ์ข€ ์˜ค๋ž˜ ๋ง์”€๋“œ๋ ธ๋Š”๋ฐ ์žฌ์ • ํ†ตํ™”์ •์ฑ…์€ ๋‹จ๊ธฐ์ ์œผ๋กœ ๊ฒฝ์ œ๋ฅผ ์•ˆ์ •ํ™”์‹œํ‚ค๋Š” ๊ฑฐ๊ณ , ์šฐ๋ฆฌ์˜ ๊ฒฝ์ œ๊ฐ€ ์•ž์œผ๋กœ ์–ด๋–ป๊ฒŒ ์ž˜ ๋˜๋А๋ƒ๋Š” ๊ธฐ์ž๋‹˜ ๋ง์”€ํ•˜์‹  ๊ตฌ์กฐ๊ฐœํ˜์„, ํŠนํžˆ ๋ชฐ๋ผ์„œ๊ฐ€ ์•„๋‹ˆ๋ผ ์ดํ•ด๋‹น์‚ฌ์ž์™€ ์‚ฌํšŒ์  ํƒ€ํ˜‘์ด ์•ˆ ๋˜๋Š” ๊ฒƒ์„ ์–ด๋–ป๊ฒŒ ํƒ€ํ˜‘ํ•ด ๋‚˜๊ฐˆ์ง€ ๊ทธ๊ฒƒ์˜ ํ•ด๊ฒฐ์ด ๊ฐ€์žฅ ์ค‘์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์‹œ ํ•œ ๋ฒˆ ๋ง์”€๋“œ๋ฆฌ์ง€๋งŒ ๊ฑฐ๊ธฐ์„œ ํ•ด๊ฒฐ ๋ชปํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ์žฌ์ • ๋‹น๊ตญํ•˜๊ณ  ํ†ตํ™”์ •์ฑ… ๋ณด๊ณ  ๋‹จ๊ธฐ ์ •์ฑ…์„ ํ†ตํ•ด์„œ ํ•ด๊ฒฐํ•˜๋ผ๊ณ  ํ•˜๋ฉด ๋‚˜๋ผ๊ฐ€ ๋ง๊ฐ€์ง€๋Š” ์ง€๋ฆ„๊ธธ์ž…๋‹ˆ๋‹ค.

https://www.bok.or.kr/portal/bbs/B0000169/view.do?nttId=10077572&menuNo=200059
๐Ÿ‘1
Wow you can check most of sessions at data summit. Thanks Databricks ๐Ÿ™‚
๋ชจ๋“  ์ธ์ƒ์—๋Š” ๊ณผ๊ฑฐ๊ฐ€ ๋ฌผ๋Ÿฌ๋‚˜๊ณ  ๋ฏธ๋ž˜๊ฐ€ ์—ด๋ฆฌ๋Š” ๋•Œ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฏธ์ง€์˜ ์„ธ๊ณ„๋กœ ๋ˆˆ์„ ๋Œ๋ฆฌ๋Š” ์ˆœ๊ฐ„์ด ๋ฐ”๋กœ ๊ทธ ์ˆœ๊ฐ„์ž…๋‹ˆ๋‹ค. ์–ด๋–ค ์‚ฌ๋žŒ์€ ์ด๋ฏธ ์•Œ๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋Œ์•„๊ฐˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์–ด๋–ค ์ด๋“ค์€ ๋ถˆํ™•์‹ค์„ฑ ์†์œผ๋กœ ๊ณง์žฅ ๊ฑธ์–ด ๋“ค์–ด๊ฐˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์–ด๋А ์ชฝ์ด ์˜ณ๋‹ค๊ณ  ๋งํ•  ์ˆ˜๋Š” ์—†์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์–ด๋А ์ชฝ์ด ๋” ์žฌ๋ฐŒ๋Š”์ง€๋Š” ๋ง์”€๋“œ๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
ํ•„ ๋‚˜์ดํŠธ ๋‚˜์ดํ‚ค ํšŒ์žฅ
๋ฐ•์ง€์›… ๋Œ€ํ‘œ๋‹˜

๋น„์ „ํŽ€๋“œ๋ฅผ ๋งŒ๋“ค๊ณ  150์กฐ์›์ด ๋„˜๋Š” ๋ˆ์„ 400์—ฌ๊ฐœ๊ฐ€ ๋„˜๋Š” AI ์Šคํƒ€ํŠธ์—…๋“ค์— ํˆฌ์žํ–ˆ์ง€๋งŒ, ์ •์ž‘ Open AI๋Š” ๋†“์น˜๊ณ  Nvidia๋„ ๋„ˆ๋ฌด ์ผ์ฐ ํŒ”์•˜์œผ๋ฉฐ ๋‹ค์ˆ˜์˜ generative AI deal๋„ ๋†“์ณค๋‹ค๋Š” WSJ์˜ ์‹ ๋ž„ํ•œ ๋น„ํŒ ๊ธฐ์‚ฌ. ์•Œ๋ฆฌ๋ฐ”๋ฐ” ํˆฌ์ž ํ•œ ๊ฑด ๋งŒ์œผ๋กœ๋„ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ํˆฌ์ž์ž ์ค‘์— ํ•œ ๋ช…์ด๋ผ ์ถฉ๋ถ„ํžˆ ์—ฌ๊ฒจ์งˆ ์ˆ˜ ์žˆ์„ํ…๋ฐ, ๋˜ ์ƒ๊ฐํ•ด๋ณด๋ฉด ์Šคํƒ€ํŠธ์—… ํˆฌ์ž๋ฅผ ํ†ตํ•ด 2-3๊ฐœ decade๋ฅผ ์—ฐ์†์œผ๋กœ ํ๋ฆ„์„ ์งš๊ณ  ํ›Œ๋ฅญํ•œ ํˆฌ์ž๋ฅผ ํ•ด๋‚ธ๋‹ค๋Š”๊ฒŒ ์–ผ๋งˆ๋‚˜ ์–ด๋ ต๊ณ  (์•„๋งˆ๋„ ์‚ฌ์‹ค์ƒ ๋ถˆ๊ฐ€๋Šฅํ• ์ง€๋„) ํฌ๊ท€ํ•œ ์ผ์ธ์ง€๋ฅผ ๋ณด์—ฌ์ฃผ๋Š”๊ฒŒ ์•„๋‹๊นŒ.

https://www.wsj.com/articles/he-spent-140-billion-on-ai-with-little-to-show-now-he-is-trying-again-dbcca17
Chat GPT์—์„œ GPT-4๋ฅผ ์“ฐ๋‹ค๋ณด๋ฉด ํ•˜๋‚˜์˜ ๋Œ€ํ™” ์ฐฝ(Window)๋‚ด์—์„œ ์ด์ „ ๋Œ€ํ™”์˜ ๋งฅ๋ฝ์„ ์ž˜ ๊ธฐ์–ตํ•˜๋Š” ํŽธ์ธ๋ฐ์š”. ์ด๊ฒƒ๊ณผ ๊ด€๋ จํ•ด์„œ ์–ด๋–ค ๋ฐฉ์‹์˜ Engineering์„ ํ™œ์šฉํ•˜๋Š”์ง€๋ฅผ ์ฐพ์•„๋ดค๋Š”๋ฐ์š”. Perplexity๊ฐ€ ์–ด๋А์ •๋„ ๋‹ต์„ ์•Œ๋ ค์คฌ๋„ค์š” ใ…Žใ…Ž ํ˜น์‹œ ์ž˜๋ชป๋œ ์ •๋ณด ์žˆ์œผ๋ฉด ์•Œ๋ ค์ฃผ์…”์š”!
GPT-3์˜ ํ›„์† ๋ฒ„์ „์ธ GPT-4๋Š” ํ”„๋กฌํ”„ํŠธ๋‚˜ ์‚ฌ์šฉ์ž ์ž…๋ ฅ์— ๋Œ€ํ•œ ์‘๋‹ต์„ ์ƒ์„ฑํ•  ๋•Œ ๋” ๋„“์€ ๋ฒ”์œ„์˜ ํ† ํฐ์ด๋‚˜ ๋‹จ์–ด๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ณ  ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๋„๋ก ์ปจํ…์ŠคํŠธ ์ฐฝ์ด ํ™•์žฅ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. GPT-4์—์„œ๋Š” ์ปจํ…์ŠคํŠธ ์ฐฝ์ด 8,000๊ฐœ์˜ ํ† ํฐ์œผ๋กœ ํ™•์žฅ๋˜์—ˆ์œผ๋ฉฐ, ์ผ๋ถ€ ๋ฒ„์ „์—์„œ๋Š” ์ตœ๋Œ€ 32,000๊ฐœ์˜ ํ† ํฐ๊นŒ์ง€ ํ™•์žฅ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. 4,000ํ† ํฐ(์•ฝ 3,000๋‹จ์–ด)์œผ๋กœ ์ œํ•œ๋˜์—ˆ๋˜ GPT-3์— ๋น„ํ•ด ์ด๋ ‡๊ฒŒ ํฐ ์ปจํ…์ŠคํŠธ ์ฐฝ์€ ํฌ๊ฒŒ ๊ฐœ์„ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
๋Œ€ํ™”๋ฅผ ๊ด€๋ฆฌํ•˜๊ณ  ์ปจํ…์ŠคํŠธ๋ฅผ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด GPT-4๋Š” ์ž…๋ ฅ ๋ฐ ์ถœ๋ ฅ์— ์ฑ„ํŒ…๊ณผ ์œ ์‚ฌํ•œ ํŠธ๋žœ์Šคํฌ๋ฆฝํŠธ ํ˜•์‹์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด ํ˜•์‹์€ ๋‹ค์ค‘ ํ„ด ๋Œ€ํ™”๋ฅผ ์œ„ํ•ด ํŠน๋ณ„ํžˆ ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ ์ฑ„ํŒ…์ด ์•„๋‹Œ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋„ ์ž˜ ์ž‘๋™ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ChatGPT์—์„œ GPT-4๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ๋Š” ์‚ฌ์šฉ์ž ํ”„๋กฌํ”„ํŠธ์— ์ ‘๋‘์‚ฌ์™€ ์ ‘๋ฏธ์‚ฌ๋ฅผ ๋ถ™์ธ ๋‹ค์Œ ์—ฐ๊ฒฐ๋œ ์ „์ฒด ํ”„๋กฌํ”„ํŠธ๊ฐ€ ์ฒ˜๋ฆฌ๋  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด ํ”„๋กœ์„ธ์Šค์˜ ๊ตฌ์ฒด์ ์ธ ์—”์ง€๋‹ˆ์–ด๋ง ์„ธ๋ถ€ ์‚ฌํ•ญ์€ ๊ณต๊ฐœ์ ์œผ๋กœ ๊ณต๊ฐœ๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
=> ์ถ”์ธกํ•˜๊ฑด๋ฐ ๊นƒํ—™ ์ฝ”ํŒŒ์ผ๋Ÿฟ๊ณผ ๋น„์Šทํ•œ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š์•˜์„๊นŒ ์‹ถ๋„ค์š”.
๊ธด ํ”„๋กฌํ”„ํŠธ๋ฅผ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด GPT-4 ๊ฐœ๋ฐœ์ž๋Š” ์ œ๋กœ ์ƒท ์ด๋ก , ์ƒ๊ฐ์˜ ์‚ฌ์Šฌ ์ด๋ก , ์—ญํ•  ํ”„๋กฌํ”„ํŠธ, ๋ช‡ ๋ฒˆ์˜ ์ƒท ํ”„๋กฌํ”„ํŠธ๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ ํšจ์œจ์ ์ธ ํ”„๋กฌํ”„ํŠธ๋ฅผ ๋งŒ๋“œ๋Š” ํฌ๋กœ๋…ธ์Šค ๋ฐฉ๋ฒ•๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
๋˜ ๋‹ค๋ฅธ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์‹œ์Šคํ…œ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง์œผ๋กœ, ๊ฐœ์ธํ™”๋œ ๊ฒฝํ—˜์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ์ฑ—๋ด‡์˜ ํ–‰๋™๊ณผ ์‘๋‹ต์„ ์•ˆ๋‚ดํ•˜๋Š” ์ง€์นจ์„ ์„ค๊ณ„ํ•˜๊ณ  ๊ฐœ์„ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. .
์š”์•ฝํ•˜๋ฉด, GPT-4๋Š” ๋” ํฐ ์ปจํ…์ŠคํŠธ ์ฐฝ์„ ํ†ตํ•ด ๋Œ€ํ™”์˜ ์ปจํ…์ŠคํŠธ๋ฅผ ๋ณด๋‹ค ํšจ๊ณผ์ ์œผ๋กœ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ •ํ™•ํ•œ ์—”์ง€๋‹ˆ์–ด๋ง ์„ธ๋ถ€ ์‚ฌํ•ญ์€ ๊ณต๊ฐœ๋˜์ง€ ์•Š์•˜์ง€๋งŒ, GPT-4๋Š” ๊ธด ํ”„๋กฌํ”„ํŠธ๋ฅผ ๊ด€๋ฆฌํ•˜๊ณ  ๋Œ€ํ™”์˜ ์ปจํ…์ŠคํŠธ๋ฅผ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์ ‘๋‘์‚ฌ ๋ฐ ์ ‘๋ฏธ์‚ฌ ์—ฐ๊ฒฐ๊ณผ ๊ณ ๊ธ‰ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ๊ธฐ๋ฒ•์„ ์กฐํ•ฉํ•˜์—ฌ ์‚ฌ์šฉํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์Šต๋‹ˆ๋‹ค.
์ฐธ๊ณ  Copilot์ด ๊ฐœ์ธํ™”๋œ ๊ฒฝํ—˜์„ ์ฃผ๋Š” ๋ฐฉ์‹
ํ”„๋กฌํ”„ํŠธ์˜ โ€˜์ ‘๋‘์‚ฌโ€˜์—๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์ธก๋ฉด์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค:
ํ”„๋กœ์ ํŠธ์˜ ๋‹ค๋ฅธ ํŒŒ์ผ์—์„œ ๊ฐ€์ ธ์˜จ ์ฝ”๋“œ ์„น์…˜์œผ๋กœ, ๋ชจ๋ธ์— ๋” ๋„“์€ ์ฝ”๋“œ๋ฒ ์ด์Šค์— ๋Œ€ํ•œ ์ปจํ…์ŠคํŠธ๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ, โ€œ# codeviz\predictions.py:โ€œ๋ผ๋Š” ์ค„๊ณผ ๊ทธ ๋’ค์— ์˜ค๋Š” ์ค„๋กœ ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค.
์ปค์„œ ์œ„์น˜๊นŒ์ง€ ํ˜„์žฌ ํŽธ์ง‘ํ•œ ํŒŒ์ผ์˜ ์ƒ๋‹น ๋ถ€๋ถ„ ๋ธ”๋ก์ž…๋‹ˆ๋‹ค.
โ€œ์ ‘๋ฏธ์‚ฌโ€œ์—๋Š” ๋‹ค์Œ์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค:
ํ˜„์žฌ ํŒŒ์ผ์—์„œ ์ปค์„œ ์œ„์น˜ ๋’ค์— ์˜ค๋Š” ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค.
์ ‘๋‘์‚ฌ์™€ ์ ‘๋ฏธ์‚ฌ๊ฐ€ ๋ชจ๋‘ ํฌํ•จ๋œ ์ด ํ”„๋กฌํ”„ํŠธ๋Š” ์ฝ”๋ฑ์Šค์™€ ์œ ์‚ฌํ•œ ๋ชจ๋ธ๋กœ ์ „์†ก๋˜์–ด ์ฝ”๋“œ๋ฅผ ์™„์„ฑํ•˜๊ธฐ ์œ„ํ•œ ์ œ์•ˆ์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
์ด๋Š” ๋ชจ๋ธ์ด ์ฃผ์–ด์ง„ ์ ‘๋‘์‚ฌ์™€ ์ ‘๋ฏธ์‚ฌ ์‚ฌ์ด์— ํ”„๋กฌํ”„ํŠธ๋ฅผ ์™„์„ฑํ•˜๋ ค๊ณ  ์‹œ๋„ํ•˜๋Š” ์ค‘๊ฐ„ ์ฑ„์šฐ๊ธฐ(FIM) ๋ชจ๋“œ๋ฅผ ๋ฐ˜์˜ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. โ€˜์ ‘๋ฏธ์‚ฌโ€˜๊ฐ€ ๋น„์–ด ์žˆ์œผ๋ฉด ๋ชจ๋ธ์€ โ€˜์ ‘๋‘์‚ฌโ€™๋งŒ ๊ณ ๋ คํ•˜๋Š” ํ‘œ์ค€ ์ž๋™ ์™„์„ฑ ๋ชจ๋“œ๋กœ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค.
๋”ฐ๋ผ์„œ ์ ‘๋‘์‚ฌ์™€ ์ ‘๋ฏธ์‚ฌ๋Š” ๋” ๋„“์€ ํ”„๋กœ์ ํŠธ, ํ˜„์žฌ ํŒŒ์ผ ๋ฐ ํ˜„์žฌ ์ฝ”๋”ฉ ์ž‘์—…์— ๋Œ€ํ•œ ํ’๋ถ€ํ•œ ์ปจํ…์ŠคํŠธ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์—ฌ ๋ชจ๋ธ์ด ๊ด€๋ จ์„ฑ ์žˆ๊ณ  ์œ ์šฉํ•œ ์ฝ”๋“œ ์ œ์•ˆ์„ ์ƒ์„ฑํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค.
๐Ÿ‘1