Continuous Learning_Startup & Investment
2.44K subscribers
513 photos
5 videos
16 files
2.74K links
We journey together through the captivating realms of entrepreneurship, investment, life, and technology. This is my chronicle of exploration, where I capture and share the lessons that shape our world. Join us and let's never stop learning!
Download Telegram
๋‚ด ์ธ์ƒ์˜ ํ™”์–‘์—ฐํ™”๋Š” 50๋Œ€๋ถ€ํ„ฐ์ด๋‹ค. ๋‚˜์ด๊ฐ€ ๋“ค์–ด๊ฐˆ์ˆ˜๋ก ์‚ฌ์—…๊ณผ ์‚ถ์ด ์ ์  ๋” ํŽธ์•ˆํ•ด์ง์„ ๋А๋‚€๋‹ค. ๋…ธ์ž์Œค์˜ ๋น„์›€๊ณผ ๋ฌด์œ„์˜ ๊นจ๋‹ฌ์Œ์„ ๋ฐ›์•„ ๋“ค์ธ ๊ฒฐ๊ณผ๋ผ๊ณ  ์ƒ๊ฐํ•œ๋‹ค.

๋‚˜์—๊ฒŒ๋„ ์ž์‚ด์„ ์ƒ๊ฐํ• ๋งŒํผ ํž˜๋“  ์‹œ๊ธฐ๋„ ์žˆ์—ˆ๋Š”๋ฐ, 20/30๋Œ€์˜ ์‹œ๊ธฐ์˜€๋˜ ๊ฒƒ ๊ฐ™๋‹ค. ์ •๋ง๋กœ ํž˜๋“ค์—ˆ์—ˆ๋‹ค. ์ƒ๊ฐ์ฒ˜๋Ÿผ ๋˜๋Š” ์ผ์ด ํ•˜๋‚˜๋„ ์—†๊ณ , ์„ธ์ƒ์— ๋Œ€ํ•œ ๋ถˆ๋งŒ์กฑ์œผ๋กœ ๊ฐ€๋“์ฐฌ ์‹œ๊ธฐ์˜€๋‹ค.

๋ฌธ๋“ ํ•œ๊ฐ€ํ•ด์ง„ ํ† ์šœ ์˜คํ›„์— ์˜›๋‚ ์— ์‚ด๋˜ ์ง‘์„ ๊ฐ€๋ณด๊ณ  ์‹ถ์€ ์ƒ๊ฐ์ด ๋“ค์–ด ์ง‘์„ ๋‚˜์„ฐ๋‹ค. ๋น„๋ก ์ „์„ธ์˜€์ง€๋งŒ ๊ฐ•๋‚จ ์ฒซ์ง‘์ด์—ˆ๋˜ ๊ฐœํฌ๋™ ์‹œ์˜์•„ํŒŒํŠธ๋Š” ์ตœ๊ทผ ์žฌ๊ฐœ๋ฐœ๋˜์–ด ๊ฐ•๋‚จ ๊ณ ๊ธ‰ ์•„ํŒŒํŠธ๋กœ ๋ณ€์‹ ํ•˜์˜€๋‹ค. ์ง์ „์— ์‚ด์•˜๋˜ ์„œ์šธ ์ž…์„ฑ ์ฒซ์ง‘์ด์—ˆ๋˜ ๋ด‰์ฒœ๋™ ๋ฐ˜์ง€ํ•˜ ๋นŒ๋ผ๋ฅผ ์ฐพ์•˜๋Š”๋ฐ, ์—ญ์‹œ ์žฌ๊ฐœ๋ฐœ๋˜์–ด ์ƒˆ๋กœ์šด ๋นŒ๋ผ๊ฐ€ ๋“ค์–ด์„œ ์žˆ์—ˆ๋Š”๋ฐ ๊ณจ๋ชฉ๊ธธ ๋ถ„์œ„๊ธฐ๋Š” ์˜›๋‚  ๊ทธ๋Œ€๋กœ ์˜€๋‹ค.

๋‚ด์นœ ๊น€์— ์ƒ์•  ์ฒซ ์‚ด๋ฆผ์ง‘์ด์—ˆ๋˜ ์—ญ๊ณก์—ญ ๋’ค์— ์žˆ๋˜ ์†Œ๋ผ ๋นŒ๋ผ๋ฅผ ์ฐพ์•˜๋Š”๋ฐ ๋†€๋ž๊ฒŒ๋„ ์•„์ง ๊ทธ๋Œ€๋กœ ์žˆ์—ˆ๋‹ค. ์ฃผ๋ณ€์€ ๋ชจ๋‘ ์žฌ๊ฐœ๋ฐœ๋˜์–ด ์•„ํŒŒํŠธ์™€ ์ƒˆ ๋นŒ๋ผ๊ฐ€ ๋“ค์–ด์„œ ์žˆ๋Š”๋ฐ ์ด ์ง‘ ๋‘๋™๋งŒ ์•„์ง๋„ ๋‚จ์•„ ์žˆ์—ˆ๋‹ค. ์ถœ์ž…๋ฌธ์ด ์—ด์‡ ๋กœ ์ž ๊ฒจ์ ธ ์žˆ๋Š”๊ฑธ ๋ณด๋‹ˆ๊นŒ ์žฌ๊ฐœ๋ฐœ์„ ์œ„ํ•ด ์ฒ ๊ฑฐ ๋Œ€๊ธฐ์ค‘์œผ๋กœ ๋ณด์˜€๋‹ค. 1987๋…„ 17ํ‰ํ˜• ์‹ ์ถ• ๋นŒ๋ผ๋ฅผ 1700๋งŒ์›์— ๋ถ„์–‘๋ฐ›์•˜์—ˆ๋Š”๋ฐ ์‹คํ‰์ˆ˜๋Š” 10ํ‰์ด ์•ˆ๋˜๋Š” ๋ฐฉ ๋‘๊ฐœ์งœ๋ฆฌ ์ž‘์€ 2์ธต ๋นŒ๋ผ ์ง‘์ด์—ˆ๋‹ค. ๋ถ„์–‘ ํ‰์ˆ˜์™€ ์‹คํ‰์ˆ˜๊ฐ€ ๋„ˆ๋ฌด ๋‹ฌ๋ผ์„œ ๋”ฐ์กŒ๋”๋‹ˆ ๋‚˜์ค‘์— 100๋งŒ์›์„ ๊น์•„์ฃผ์—ˆ๋˜ ์ถ”์–ต์˜ ์ง‘์ด๋‹ค. 2๋…„๋’ค 89๋…„์— ์„œ์šธ ์ž…์„ฑ์„ ๊ฒฐ์‹ฌํ•˜๊ณ  ๋ด‰์ฒœ๋™ ์‚ฐ๋™๋„ค ๋นŒ๋ผ์— 2000๋งŒ์› ์งœ๋ฆฌ ์ „์„ธ ์ง‘์— ์ž…์ฃผํ•˜๊ธฐ์œ„ํ•ด์„œ 2300๋งŒ์›์— ํŒ”๊ณ  ๋‚˜์™”์œผ๋‹ˆ๊นŒ ๊ฝค ๊ดœ์ฐฎ์€ ์žฌํ…Œํฌ์˜€๋˜ ์…ˆ์ด๋‹ค.
์ง€๊ธˆ ์‚ฌ๋Š” ๋…ผํ˜„๋™ ์ง‘์€ ๊ฐ•๋‚จ์—์„œ ๋„ค๋ฒˆ์งธ ์ง‘์ธ๋ฐ ๊ฑฐ๋ž˜ ๋‚ด์—ญ์€ ์ƒ๋žตํ•œ๋‹ค. ์ง‘ ๋•œ์‹œ ๊ณ ์ƒํ•˜๋Š” ๋ถ„๋“ค์—๊ฒŒ๋Š” ๋ถ„๋…ธ ์œ ๋ฐœ ์Šคํ† ๋ฆฌ๊ฐ€ ๋  ์ˆ˜๋„. ใ…Ž

๊ทธ ์‹œ์ ˆ ๋ถ„์œ„๊ธฐ๋ฅผ ๋‹ค์‹œ ๋Œ์•„ ๋ณด๋ฉด์„œ, ์ž์นซ ์žŠ๊ธฐ ์‰ฌ์šด ์ดˆ์‹ฌ์„ ๋˜์‚ด๋ ค ๋‚ด๋Š” ์งง์ง€๋งŒ ๊นŠ์€ ์ถ”์–ต์˜ ์—ฌํ–‰์ด์—ˆ๋‹ค. ๋ˆ„์ถ”ํ•œ ์˜›์ง‘๊ณผ ๊ณจ๋ชฉ๊ธธ ์•ž์—์„œ ๊ทธ๋™ํ•œ ์ ˆ์ œํ•˜๊ณ  ์‚ด์•˜๋˜ ๊ฐ์ •์ด ์šธ์ปฅํ•˜๋Š” ๊ธฐ๋ถ„์ด ๊ทธ๋‹ฅ ๋‚˜์˜์ง„ ์•Š์•˜๋‹ค. ๋ˆ„๊ตฌ๋‚˜ ์ธ์ƒ์—์„œ ๊ตด๊ณก์€ ์žˆ๋‹ค. ๋ˆˆ๋ฌผ ์ –์€ ๋นต์„ ๋จน์–ด ๋ณด์ง€ ์•Š์€ ์ž์™€๋Š” ์–ด์šธ๋ฆฌ์ง€ ๋ง๋ผ๋Š” ๋ง๋„ ์žˆ๋‹ค. ์‚ฌ์—…๋„ ๋งˆ์ฐฌ๊ฐ€์ง€์ด๋‹ค. ์–ด๋ ค์šด ์‹œ๊ธฐ๋ฅผ ๊ฒช์–ด ๋ณด์ง€ ์•Š์€ ์‚ฌ์—…๊ฐ€๋Š” ์ง„์ •ํ•œ ์‚ฌ์—…๊ฐ€๋ผ๊ณ  ๋งํ•˜๊ธฐ ์–ด๋ ต๋‹ค.
๋งŒ์ผ ํž˜๋“  ์‹œ๊ธฐ๋ฅผ ๋ณด๋‚ด๋Š” ๋ถ„์ด ์žˆ๋‹ค๋ฉด ์ง€๊ธˆ์˜ ๊ณ ์ƒ์ด ๋‚˜์ค‘์˜ ํ–‰๋ณต์„ ์œ„ํ•œ ์”จ์•—์ด๋ผ๊ณ  ๋งํ•ด ์ฃผ๊ณ  ์‹ถ๋‹ค.
Tree of Thoughts (ToT), which generalizes over the popular Chain of Thought approach to prompting language models, and enables exploration over coherent units of text (thoughts) that serve as intermediate steps toward problem solving. ToT allows LMs to perform deliberate decision making by considering multiple different reasoning paths and self-evaluating choices to decide the next course of action, as well as looking ahead or backtracking when necessary to make global choices. Our experiments show that ToT significantly enhances language models' problem-solving abilities on three novel tasks requiring non-trivial planning or search: Game of 24, Creative Writing, and Mini Crosswords. For instance, in Game of 24, while GPT-4 with chain-of-thought prompting only solved 4% of tasks, our method achieved a success rate of 74%.
DragGAN์ด๋ž€ ์žฌ๋ฏธ์žˆ๋Š” ํ•ฉ์„ฑ ๋ฐฉ์‹์ด ๊ณต๊ฐœ๋˜์—ˆ๋„ค์š”. GAN ๊ธฐ๋ฐ˜์œผ๋กœ ์ฝ˜ํ…์ธ  ํ•ฉ์„ฑ์„ ํ•˜๋Š”๋ฐ, ์‚ฌ์šฉ์ž๊ฐ€ ์ด๋ฏธ์ง€์˜ ํฌ์ธํŠธ๋ฅผ ๋ชฉํ‘œ ์œ„์น˜๋กœ ๋“œ๋ž˜๊ทธํ•˜์—ฌ ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒํ•˜๊ฒŒ ์กฐ์ž‘ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐฉ์‹์ด๋ผ ํ›จ์”ฌ ์›ํ•˜๋Š” ์ด๋ฏธ์ง€๋ฅผ ์†์‰ฝ๊ฒŒ ๋งŒ๋“ค์ˆ˜ ์žˆ๋„ค์š”.

์ œ๋ชฉ: Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold

์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ œ๋„ˆ๋ ˆ์ดํ‹ฐ๋ธŒ ์ด๋ฏธ์ง€ ๋งค๋‹ˆํด๋“œ์—์„œ ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ํฌ์ธํŠธ ๊ธฐ๋ฐ˜ ์กฐ์ž‘์„ ์œ„ํ•œ ๋ฐฉ๋ฒ•์ธ DragGAN์„ ์†Œ๊ฐœํ•˜์—ฌ ์‚ฌ์šฉ์ž๊ฐ€ ์ƒ์„ฑ๋œ ์˜ค๋ธŒ์ ํŠธ์˜ ํฌ์ฆˆ, ๋ชจ์–‘, ํ‘œํ˜„, ๋ ˆ์ด์•„์›ƒ์„ ์‚ฌ์šฉ์ž ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ๋ฐฉ์‹์œผ๋กœ ์ •๋ฐ€ํ•˜๊ฒŒ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค.

์ฃผ์š” ์ธ์‚ฌ์ดํŠธ์™€ ๊ตํ›ˆ
* GAN์„ ์ œ์–ดํ•˜๋Š” ๊ธฐ์กด์˜ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์œ ์—ฐ์„ฑ, ์ •๋ฐ€์„ฑ, ๋ฒ”์šฉ์„ฑ์ด ๋ถ€์กฑํ•˜๊ณ  ์ฃผ์„์ด ๋‹ฌ๋ฆฐ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋‚˜ 3D ๋ชจ๋ธ์— ์˜์กดํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Šต๋‹ˆ๋‹ค.
* DragGAN์€ ์‚ฌ์šฉ์ž๊ฐ€ ์ด๋ฏธ์ง€์˜ ํฌ์ธํŠธ๋ฅผ '๋“œ๋ž˜๊ทธ'ํ•˜์—ฌ ๋ชฉํ‘œ ์œ„์น˜์— ๋„๋‹ฌํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์—ฌ ์ •๋ฐ€ํ•œ ์กฐ์ž‘์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•จ์œผ๋กœ์จ ์ƒˆ๋กœ์šด ๋ฐฉ์‹์œผ๋กœ GAN์„ ์ œ์–ดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
* ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ํŠน์ง• ๊ธฐ๋ฐ˜ ๋ชจ์…˜ ๊ฐ๋…๊ณผ ํฌ์ธํŠธ ์ถ”์  ์ ‘๊ทผ ๋ฐฉ์‹์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์›ํ•˜๋Š” ์ œ์–ด๋ฅผ ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค.
* DragGAN์„ ์‚ฌ์šฉํ•˜๋ฉด ํ”ฝ์…€ ์œ„์น˜๋ฅผ ์ •๋ฐ€ํ•˜๊ฒŒ ์ œ์–ดํ•˜์—ฌ ์ด๋ฏธ์ง€๋ฅผ ๋ณ€ํ˜•ํ•จ์œผ๋กœ์จ ๋™๋ฌผ, ์ž๋™์ฐจ, ์‚ฌ๋žŒ ๋“ฑ ๋‹ค์–‘ํ•œ ๊ฐ์ฒด ๋ฒ”์ฃผ๋ฅผ ์กฐ์ž‘ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ƒ์„ฑ ์ด๋ฏธ์ง€ ๋งค๋‹ˆํด๋“œ์—์„œ ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒํ•œ ํฌ์ธํŠธ ๊ธฐ๋ฐ˜ ์กฐ์ž‘์„ ์œ„ํ•œ ๊ฐ•๋ ฅํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ์„œ DragGAN์„ ์†Œ๊ฐœํ•˜์—ฌ ์‚ฌ์šฉ์ž๊ฐ€ ์ƒ์„ฑ๋œ ์˜ค๋ธŒ์ ํŠธ์˜ ํฌ์ฆˆ, ๋ชจ์–‘, ํ‘œํ˜„, ๋ ˆ์ด์•„์›ƒ์„ ์ •๋ฐ€ํ•˜๊ฒŒ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค.

์š”์•ฝ:
์‚ฌ์šฉ์ž์˜ ์š”๊ตฌ๋ฅผ ์ถฉ์กฑํ•˜๋Š” ์‹œ๊ฐ์  ์ฝ˜ํ…์ธ ๋ฅผ ํ•ฉ์„ฑํ•˜๋ ค๋ฉด ์ƒ์„ฑ๋œ ์˜ค๋ธŒ์ ํŠธ์˜ ํฌ์ฆˆ, ๋ชจ์–‘, ํ‘œ์ •, ๋ ˆ์ด์•„์›ƒ์„ ์œ ์—ฐํ•˜๊ณ  ์ •๋ฐ€ํ•˜๊ฒŒ ์ œ์–ดํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์กด ์ ‘๊ทผ ๋ฐฉ์‹์€ ์ˆ˜๋™์œผ๋กœ ์ฃผ์„์ด ๋‹ฌ๋ฆฐ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ๋˜๋Š” ์ด์ „ 3D ๋ชจ๋ธ์„ ํ†ตํ•ด ์ƒ์„ฑ์  ์ ๋Œ€ ์‹ ๊ฒฝ๋ง(GAN)์„ ์ œ์–ดํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ์œ ์—ฐ์„ฑ, ์ •๋ฐ€์„ฑ, ์ผ๋ฐ˜์„ฑ์ด ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ๊ทธ๋ฆผ 1๊ณผ ๊ฐ™์ด ์ด๋ฏธ์ง€์˜ ์ž„์˜์˜ ์ง€์ ์„ '๋“œ๋ž˜๊ทธ'ํ•˜์—ฌ ์‚ฌ์šฉ์ž ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ๋ฐฉ์‹์œผ๋กœ ๋ชฉํ‘œ ์ง€์ ์— ์ •ํ™•ํ•˜๊ฒŒ ๋„๋‹ฌํ•˜๋„๋ก ํ•˜๋Š”, ๊ฐ•๋ ฅํ•˜์ง€๋งŒ ์•„์ง ๋งŽ์ด ์—ฐ๊ตฌ๋˜์ง€ ์•Š์€ GAN ์ œ์–ด ๋ฐฉ๋ฒ•์„ ์—ฐ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ตฌ์„ฑ ์š”์†Œ๋กœ ๊ตฌ์„ฑ๋œ DragGAN์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค: 1) ํ•ธ๋“ค ํฌ์ธํŠธ๋ฅผ ๋ชฉํ‘œ ์œ„์น˜๋กœ ์ด๋™ํ•˜๋„๋ก ์œ ๋„ํ•˜๋Š” ํŠน์ง• ๊ธฐ๋ฐ˜ ๋ชจ์…˜ ๊ฐ๋…๊ณผ 2) ํŒ๋ณ„ ์ƒ์„ฑ๊ธฐ ๊ธฐ๋Šฅ์„ ํ™œ์šฉํ•˜์—ฌ ํ•ธ๋“ค ํฌ์ธํŠธ์˜ ์œ„์น˜๋ฅผ ๊ณ„์† ํŒŒ์•…ํ•˜๋Š” ์ƒˆ๋กœ์šด ํฌ์ธํŠธ ์ถ”์  ์ ‘๊ทผ ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. DragGAN์„ ์‚ฌ์šฉํ•˜๋ฉด ๋ˆ„๊ตฌ๋‚˜ ํ”ฝ์…€์˜ ์œ„์น˜๋ฅผ ์ •๋ฐ€ํ•˜๊ฒŒ ์ œ์–ดํ•˜์—ฌ ์ด๋ฏธ์ง€๋ฅผ ๋ณ€ํ˜•ํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ๋™๋ฌผ, ์ž๋™์ฐจ, ์‚ฌ๋žŒ, ํ’๊ฒฝ ๋“ฑ ๋‹ค์–‘ํ•œ ์นดํ…Œ๊ณ ๋ฆฌ์˜ ํฌ์ฆˆ, ๋ชจ์–‘, ํ‘œ์ •, ๋ ˆ์ด์•„์›ƒ์„ ์กฐ์ž‘ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์กฐ์ž‘์€ GAN์˜ ํ•™์Šต๋œ ์ƒ์„ฑ ์ด๋ฏธ์ง€ ๋งค๋‹ˆํด๋“œ์—์„œ ์ˆ˜ํ–‰๋˜๋ฏ€๋กœ ๊ฐ€๋ ค์ง„ ์ฝ˜ํ…์ธ ๋ฅผ ํ™˜๊ฐํ™”ํ•˜๊ณ  ์˜ค๋ธŒ์ ํŠธ์˜ ๊ฐ•์„ฑ์„ ์ผ๊ด€๋˜๊ฒŒ ๋”ฐ๋ฅด๋Š” ๋ชจ์–‘์„ ๋ณ€ํ˜•ํ•˜๋Š” ๋“ฑ ๊นŒ๋‹ค๋กœ์šด ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋„ ์‚ฌ์‹ค์ ์ธ ๊ฒฐ๊ณผ๋ฌผ์„ ์ƒ์„ฑํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ •์„ฑ์  ๋ฐ ์ •๋Ÿ‰์  ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ด๋ฏธ์ง€ ์กฐ์ž‘ ๋ฐ ํฌ์ธํŠธ ์ถ”์  ์ž‘์—…์—์„œ ์ด์ „ ์ ‘๊ทผ ๋ฐฉ์‹์— ๋น„ํ•ด DragGAN์˜ ์ด์ ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ GAN ๋ฐ˜์ „์„ ํ†ตํ•ด ์‹ค์ œ ์ด๋ฏธ์ง€๋ฅผ ์กฐ์ž‘ํ•˜๋Š” ๋ชจ์Šต๋„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

arXiv: https://arxiv.org/abs/2305.10973
PDF: https://arxiv.org/pdf/2305.10973.pdf
arXiv-vanity: https://www.arxiv-vanity.com/papers/2305.10973
Paper page: https://huggingface.co/papers/2305.10973
์ •๋ง ๋˜๋‹ค์‹œ ํ•˜๋ฃจํ•˜๋ฃจ ์ˆจ๊ฐ€์˜๊ฒŒ ๋Œ์•„๊ฐ€๊ณ  ์žˆ๋„ค์š”.
- ํ˜„์žฌ๊นŒ์ง€ ๋“ฑ๋ก๋œ ChatGPT plugin์ด 86๊ฐœ
- iOS ์•ฑ์Šคํ† ์–ด๋ฅผ ํ†ตํ•œ official iOS ChatGPT ์•ฑ ์ถœ์‹œ (Plugin ๊ธฐ๋Šฅ์€ ๋ฒ ํƒ€๋ฒ„์ „์ด๋ผ ์›น์—์„œ๋งŒ ์—ฐ๋™๋˜๋Š” ๋“ฏ)
- ๋ฉ”ํƒ€๋„ AI์— ๋Œ€ํ•œ ์„ธ๊ฐ€์ง€ ๋‰ด์Šค ๋ฐœํ‘œ: MTIA v1: Metaโ€™s first-generation AI inference accelerator, Metaโ€™s Research SuperCluster, Reimagining Metaโ€™s infrastructure for the AI age
- Amazon Burnham, Amazon AI Search
- Apple Voice Cloning, Alzheimer's Detection
- OpenAI์—์„œ๋„ Open-Source LLM ์ค€๋น„์ค‘
New Appstore x Search era
๊ฐœ์ธ ๋ธ”๋กœ๊ทธ๋ฅผ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค. ๋‹น๋ถ„๊ฐ„์€ ์˜์–ด ์ปจํ…์ธ ๋งŒ ์˜ฌ๋ฆด ์˜ˆ์ •์ธ๋ฐ ํ•œ๊ธ€ ์ปจํ…์ธ ๋„ ๋”ฐ๋กœ ์˜ฌ๋ฆด์ง€๋Š” ๊ณ ๋ฏผํ•ด๋ณผ ์ƒ๊ฐ์ž…๋‹ˆ๋‹ค. https://www.continuouslearningmatthew.com/

์—ญ๋ฐœ์ƒ์„ ๋ฐ›์•„๋“ค์ด๋‹ค: ๋…๋ฆฝ์  ์‚ฌ๊ณ ๋กœ ๊ฐ€๋Š” ๊ธธ
์ฃผ๋ง์— ์นœ๊ตฌ๊ฐ€ The Strength of Being Misunderstood, (https://blog.samaltman.com/the-strength-of-being...) ๊ธ€์„ ๊ณต์œ ํ•ด์คฌ๋‹ค.
๋งŽ์€ ์‚ฌ๋žŒ๋“ค์€ ๋‹ค๋ฅธ ์‚ฌ๋žŒ์˜ ์ƒ๊ฐ์„ ๋„ˆ๋ฌด ๋งŽ์ด ์‹ ๊ฒฝ์“ฐ๋ฉฐ ์‚ด์•„๊ฐ„๋‹ค. ๋‚จ๋“ค์˜ ์ƒ๊ฐ์„ ๋”ฐ๋ผ๊ฐ€๋‹ค๋ณด๋ฉด ํ‰๋ฒ”ํ•ด์งˆ ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ๊ฐ€์น˜์žˆ๋Š” ๊ฒƒ์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ํ˜ผ์ž ํ•  ์ˆ˜ ์žˆ๋Š” ์ผ์ด ๋งŽ์ง€ ์•Š๊ธฐ์— ๋‹ค๋ฅธ ์‚ฌ๋žŒ๋“ค๊ณผ ์ž˜ ์กฐํ™”๋ฅผ ์ด๋ฃจ๋Š” ๊ฒƒ ๋‹ค๋ฅธ ์˜๊ฒฌ์— ์—ด๋ ค์žˆ๋Š” ๊ฒƒ ์—ญ์‹œ ์ค‘์š”ํ•˜๋‹ค. โ€˜๋ˆ„๊ตฌ์˜ ์˜๊ฒฌ์„ ๋“ค์„ ๊ฒƒ์ธ์ง€โ€™ ์„ ํƒํ•˜๋Š” ๊ฒƒ๋„ ์ค‘์š”ํ•˜์ง€๋งŒ, โ€˜์–ผ๋งˆ ๊ธฐ๊ฐ„๋™์•ˆโ€™ ๋‚จ๋“ค์ด ๋ฏฟ์ง€ ์•Š๋Š” ์‚ฌ์‹ค์„ ๋ฏฟ๊ฑฐ๋‚˜ ๋‹น์—ฐํ•˜๋‹ค๊ณ  ์—ฌ๊ธฐ๋Š” ๊ฒƒ์„ ๋‹น์—ฐํ•˜๊ฒŒ ์—ฌ๊ธฐ์ง€ ์•Š๋Š” ๊ฒƒ๋„ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ €ํ‰๊ฐ€๋˜์–ด ์žˆ๋Š” ํšŒ์‚ฌ์˜ ์ฃผ์‹์„ ์‚ฌ์„œ ์šฐ๋Ÿ‰์ฃผ๊ฐ€ ๋˜๊ธฐ๊นŒ์ง€ ๊ธฐ๋‹ค๋ฆฌ๋Š” ๊ฒƒ์„ ๊ฐ€์น˜ํˆฌ์ž๋ผ๊ณ  ํ•œ๋‹ค๋ฉด, ๋‚จ๋“ค์€ ๋‹ค ๋™์˜ํ•˜์ง€ ์•Š๋Š”๋ฐ ๋‚˜๋Š” ๊ฐ•ํ•˜๊ฒŒ ๋ฏฟ๊ณ  ์žˆ๋Š” ์‚ฌ์‹ค์— ์˜ค๋žœ๊ธฐ๊ฐ„ ๋ฒ ํŒ…ํ•ด์„œ ๋‚ด๊ฐ€ ๋ฏฟ๋Š” ์‚ฌ์‹ค์ด ์˜ณ๋‹ค๋Š” ๊ฒƒ์„ ์ฆ๋ช…ํ•ด๋‚ธ๋‹ค๋ฉด ํฐ ๋ณ€ํ™”๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
๊ทธ๋Ÿฐ๋ฐ, ์ด ๊ณผ์ •์ด ์‰ฝ์ง€๋งŒ์€ ์•Š์Šต๋‹ˆ๋‹ค. ์ผ๋ก ์ด Space X๋ฅผ ํ•  ๋•Œ ๋ณธ์ธ์˜ ์˜์›…์ด์—ˆ๋˜ Neil Armstrong์ด Space X์˜ ํ–‰๋ณด๋ฅผ ๋Œ€๋†“๊ณ  ๋น„ํŒํ–ˆ๋˜ ์ผ(https://youtu.be/8P8UKBAOfGo)์ด๋‚˜ Sam Altman์ด ํฐ ๊ฟˆ์„ ๊พธ๊ฒŒ ํ•ด์ค€ Elon์ด Sam์˜ ํ–‰๋ณด๋ฅผ ๋น„ํŒํ•˜๋Š” ์ผ(https://youtu.be/GKvC-C_uZrM)์„ ๋ณด๋ฉด ์ผ๋ฐ˜ ์‚ฌ๋žŒ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‚ด๊ฐ€ ์กด๊ฒฝํ–ˆ๋˜, ๋„์›€ ๋ฐ›์•˜๋˜ ์‚ฌ๋žŒ๋“ค์ด ๋‚˜์˜ ์ผ์„ ๋น„ํŒํ•  ๋•Œ ๊ทธ ์‹ ๋…์„ ์œ ์ง€ํ•˜๊ธฐ๊ฐ€ ์–ผ๋งˆ๋‚˜ ์–ด๋ ค์šด์ง€ ๋ณผ ์ˆ˜ ์žˆ์ฃ .
์ด๋Ÿฐ ์‚ฌ๋žŒ๋“ค์„ Contrarian(์—ญ๋ฐœ์ƒ์ž, ์ ์ ˆํ•œ ๋‹จ์–ด์„ ๋ชป์ฐพ๊ฒ ๋„ค์š”.)๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. Contrarian๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ์•Œ๋ ค์ง„ ์‚ฌ์‹ค์— ๋ฐ˜๋Œ€ํ•˜๋Š” ์‚ฌ๋žŒ์ž…๋‹ˆ๋‹ค. ๊ทธ๋“ค์€ ๋‹ค๋ฅธ ๊ด€์ ์—์„œ ์‚ฌ๋ฌผ์„ ๋ณด๊ธฐ ๋•Œ๋ฌธ์— ๋ฐ˜๋Œ€ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋“ค์€ ํ˜„์ƒ ์œ ์ง€์— ๋„์ „ํ•˜๊ณ , ํ†ต์šฉ๋˜๋Š” ๊ทœ๋ฒ”์— ์˜๋ฌธ์„ ์ œ๊ธฐํ•˜๋ฉฐ, ์ž์‹ ์˜ ์‹ ๋…์— ํ™€๋กœ ์„œ๋Š” ๊ฒƒ์„ ๋‘๋ ค์›Œํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
์—ญ๋ฐœ์ƒ์ž๋Š” ์Šคํƒ€ํŠธ์—…๊ณผ ํˆฌ์ž์—์„œ ์ƒ๋‹นํ•œ ์ด์ ์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ฐฝ์—…์ž์™€ ํˆฌ์ž์ž๋Š” ๋‹ค๋ฅธ ์‚ฌ๋žŒ๋“ค์ด ๊ฐ„๊ณผํ•˜๋Š” ๊ธฐํšŒ๋ฅผ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์œ ๋ช…ํ•œ ๊ธฐ์ˆ  ๊ฑฐ๋ฌผ์ด์ž ํˆฌ์ž์ž์ธ Peter Thiel์€ ๊ทธ์˜ ๋ฐ˜๋Œ€ ์ „๋žต์œผ๋กœ ์œ ๋ช…ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Š” ๋‹น์‹œ์—๋Š” ํŒŒ๊ฒฉ์ ์œผ๋กœ ๋ณด์˜€์ง€๋งŒ ๋‚˜์ค‘์— ํฐ ์„ฑ๊ณต์„ ๊ฑฐ๋‘” ๊ฒƒ์œผ๋กœ ์ž…์ฆ๋œ ํˆฌ์ž๋ฅผ ์ž์ฃผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
์—ญ๋ฐœ์ƒ์ž๋Š” ํšŒ๋ณต๋ ฅ์ด ๋›ฐ์–ด๋‚˜๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋“ค์€ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ๋งํ•˜๋Š” ๋‹ค๋ฅธ ์‚ฌ๋žŒ๋“ค์˜ ํŒ๋‹จ์„ ๊ฒฌ๋”œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ฐฝ์—…์ž์ด์ž ํˆฌ์ž์ž๋กœ์„œ ์ž์‹ ์˜ ๊ฐ€์„ค์— ๋Œ€ํ•œ ํ™•์‹ ์ด ์žˆ๊ณ  ํ‹€๋ ธ์„ ๋•Œ ๋น ๋ฅด๊ฒŒ ์ˆ˜์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์ด ์žˆ๋‹ค๋ฉด ์™ธ๋ถ€์˜ ํ‰๊ฐ€๋ณด๋‹ค๋Š” ์ž์‹ ๋งŒ์˜ ๊ธฐ์ค€์— ์ง‘์ค‘ํ•˜์—ฌ ์‹œ๋„ํ•ด๋ณด๊ณ  ๋น ๋ฅด๊ฒŒ ์ˆ˜์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ „์„ค์ ์ธ ๊ฑฐ์‹œ ํˆฌ์ž์ž Druckenmiller๋Š” ํ•œ ์ธํ„ฐ๋ทฐ์—์„œ ์ž์‹ ์€ ํ‹€๋ฆด ๋•Œ๊ฐ€ ๋งŽ์ง€๋งŒ, ํ‹€๋ ธ์„ ๋•Œ ์†์‹ค์„ ๋ณผ ์œ„ํ—˜์— ๋Œ€ํ•ด ๊นŠ์ด ์ƒ๊ฐํ•˜๊ณ , ํ‹€๋ ธ์„ ๋•Œ ๋นจ๋ฆฌ ๊ณ ์น  ์ค€๋น„๊ฐ€ ๋˜์–ด ์žˆ๋‹ค๊ณ  ๋งํ–ˆ์Šต๋‹ˆ๋‹ค.
์—ญ๋ฐœ์ƒ์ž๋Š” ๋น„์ฆˆ๋‹ˆ์Šค ์„ธ๊ณ„์—์„œ๋งŒ ๊ตญํ•œ๋œ ๊ฒƒ์ด ์•„๋‹™๋‹ˆ๋‹ค. ๊ทธ๊ฒƒ์€ ๋„๋ฆฌ ๋ฐ›์•„๋“ค์—ฌ์ง€๋Š” ์‹ ๋…์— ์˜๋ฌธ์„ ์ œ๊ธฐํ•˜๊ณ  ์ž์‹ ์˜ ์ดํ•ด์™€ ๊ฐ€์น˜์— ๋”ฐ๋ผ ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋„๋ก ์žฅ๋ คํ•˜๋Š” ์‚ถ์˜ ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ์ด๋Š” ์‚ฌํšŒ์  ๊ทœ๋ฒ”์— ์–ด๊ธ‹๋‚˜๋”๋ผ๋„ ์Šค์Šค๋กœ์—๊ฒŒ ์ง„์‹คํ•ด์ง€๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
์—ญ๋ฐœ์ƒ์ž๊ฐ€ ๋˜๋Š” ๊ฒƒ์€ ๋‹ค๋ฅธ ์‚ฌ๋žŒ์˜ ๋ง์„ ์ „ํ˜€ ๋“ฃ์ง€ ์•Š๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์ž์‹ ์˜ ์ƒ๊ฐ์— ๊ท€๋ฅผ ๊ธฐ์šธ์ด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ทธ๊ฒƒ์€ ์ž์‹ ๊ณผ ์ฃผ๋ณ€ ์‚ฌ๋žŒ๋“ค์˜ ๋ง์„ ๊ฒฝ์ฒญํ•˜๊ณ  ์ž์‹ ๊ณผ ๋‹ค๋ฅธ ์‚ฌ๋žŒ๋“ค์ด ํ•ญ์ƒ ํ‹€๋ฆด ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์ธ์ •ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
๋…๋ฆฝ์ ์œผ๋กœ ์ƒ๊ฐํ•˜๋„๋ก ์Šค์Šค๋กœ ํ›ˆ๋ จํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์—ฌ๋Ÿฌ ๊ฐ€์ง€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
1. ๋ชจ๋“  ๊ฒƒ์— ์งˆ๋ฌธํ•˜๊ธฐ: ๋ชจ๋“  ๊ฒƒ์„ ๋ณด์ด๋Š” ๊ฒƒ ๊ทธ๋Œ€๋กœ ๋ฐ›์•„๋“ค์ด์ง€ ๋งˆ์„ธ์š”. ํ•ญ์ƒ ์ด์œ ๋ฅผ ๋ฌป๊ณ  ๊ทผ๋ณธ์ ์ธ ์ด์œ ๋ฅผ ์ดํ•ดํ•˜๋ ค๊ณ  ๋…ธ๋ ฅํ•˜์„ธ์š”.
2. ๋ถˆํŽธํ•จ์„ ํฌ์šฉํ•˜์„ธ์š”: ๋…๋ฆฝ์ ์ธ ์‚ฌ๊ณ ๋Š” ๊ธฐ์กด์˜ ๊ทœ๋ฒ”์— ๋„์ „ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ข…์ข… ๋ถˆํŽธํ•จ์„ ์œ ๋ฐœํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ถˆํŽธํ•จ์— ์ต์ˆ™ํ•ด์ง€๋Š” ๋ฒ•์„ ๋ฐฐ์šฐ์„ธ์š”.
3. ๋‹ค์–‘ํ•œ ๊ด€์ ์„ ์ถ”๊ตฌํ•˜์„ธ์š”: ๋‚˜์™€ ๋‹ค๋ฅธ ์ƒ๊ฐ์„ ๊ฐ€์ง„ ์‚ฌ๋žŒ๋“ค๊ณผ ํ•จ๊ป˜ํ•˜์„ธ์š”. ์ด๋ฅผ ํ†ตํ•ด ์‹œ์•ผ๋ฅผ ๋„“ํžˆ๊ณ  ์ž์‹ ์˜ ์‹ ๋…์— ๋„์ „ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
4. ์ง€์†์ ์œผ๋กœ ๋ฐฐ์šฐ์„ธ์š”: ์ƒˆ๋กœ์šด ๊ฒƒ์„ ๊ณ„์† ๋ฐฐ์šฐ์„ธ์š”. ํด ๊ทธ๋ ˆ์ด์—„์ด "๋งํ•  ์ˆ˜ ์—†๋Š” ๊ฒƒ"์ด๋ผ๋Š” ์—์„ธ์ด์—์„œ ์ง€์ ํ–ˆ๋“ฏ์ด, ์ƒˆ๋กœ์šด ๊ฒƒ์„ ๋ฐฐ์šฐ๋ฉด ์ข…์ข… ์ƒ๋ฐ˜๋œ ๊ฒฌํ•ด๋ฅผ ๊ฐ–๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
5. ์ž์‹ ์˜ ํŒ๋‹จ์„ ์‹ ๋ขฐํ•˜์„ธ์š”: ์ž์‹ ์˜ ๊ฒฌํ•ด๊ฐ€ ์ธ๊ธฐ๊ฐ€ ์—†์„์ง€๋ผ๋„ ์ž์‹ ์˜ ํŒ๋‹จ์„ ์‹ ๋ขฐํ•˜์„ธ์š”. ์กฐ์‚ฌ๋ฅผ ์ถฉ๋ถ„ํžˆ ํ•˜๊ณ  ์ถฉ๋ถ„ํžˆ ์ƒ๊ฐํ–ˆ๋‹ค๋ฉด ์ž์‹ ์˜ ์‹ ๋…์„ ๊ณ ์ˆ˜ํ•˜๋Š” ๊ฒƒ์„ ๋‘๋ ค์›Œํ•˜์ง€ ๋งˆ์„ธ์š”.
6. ์—ญ๋ฐœ์ƒ์€ ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ์ž…๋‹ˆ๋‹ค. ์Šคํƒ€ํŠธ์—… ์ฐฝ์—…์ž, ํˆฌ์ž์ž, ๊ฐœ์ธ ๋ชจ๋‘์—๊ฒŒ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด์ œ ์—ญ๋ฐœ์ƒ์„ ์ˆ˜์šฉํ•˜๊ณ , ๊ธฐ์กด ๊ด€์Šต์— ๋„์ „ํ•˜๋ฉฐ, ์ž์‹ ๋งŒ์˜ ๊ธธ์„ ๊ฐœ์ฒ™ํ•ด ๋ณด์„ธ์š”.

๊ด€๋ จ ๊ธ€์„ ์˜์–ด๋กœ ์ž‘์„ฑํ–ˆ๊ณ  ๋ธ”๋กœ๊ทธ์— ๊ฒŒ์‹œํ–ˆ์Šต๋‹ˆ๋‹ค.

Resources related to being a contrarian.
1. http://www.paulgraham.com/think.html
2.https://hbr.org/2021/09/how-to-be-a-smart-contrarian
3. http://www.paulgraham.com/newthings.html
4. paulgraham.com/marginal.html
5. https://www.nytimes.com/.../the-contrarian-peter-thiel...
6. https://www.nytimes.com/.../review-contrarian-peter-thiel...
7. https://blog.samaltman.com/the-strength-of-being...
8. https://waitbutwhy.com/.../the-cook-and-the-chef-musks...
๐Ÿ‘1
CBInsight์˜ Global AI ํˆฌ์ž ๊ด€๋ จ ๋ฆฌํฌํŠธ. ๋ณด๊ณ ์„œ์— ๋”ฐ๋ฅด๋ฉด 2023๋…„ 1๋ถ„๊ธฐ์— AI์— ๋Œ€ํ•œ ํˆฌ์ž๊ฐ€ ํฌ๊ฒŒ ๊ฐ์†Œํ•œ ๊ฒƒ์œผ๋กœ ๋ฐํ˜€์กŒ์Šต๋‹ˆ๋‹ค. ๋ช‡๋ช‡ ์ƒ์„ฑํ˜• AI ์Šคํƒ€ํŠธ์—…์˜ ์„ฑ์žฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์ „๋ฐ˜์ ์ธ VC ์‹œ์žฅ์˜ ์นจ์ฒด๋ฅผ AI ๋ถ€๋ฌธ๋„ ๋น—๊ฒจ๊ฐ€์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ฆฌํฌํŠธ์˜ ์ฃผ์š” 8๊ฐ€์ง€ ํฌ์ธํŠธ๋ฅผ ์ •๋ฆฌํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
1. ๊ธ€๋กœ๋ฒŒ AI ๋ฒค์ฒ˜ ํˆฌ์ž๊ธˆ์•ก์€ ์ „ ๋ถ„๊ธฐ ๋Œ€๋น„ 43% ๊ฐ์†Œํ•˜์—ฌ ์ด 54์–ต ๋‹ฌ๋Ÿฌ์— ๋จธ๋ฌผ๋ €์Šต๋‹ˆ๋‹ค. ์ด๋Š” 2018๋…„ 1๋ถ„๊ธฐ ์ดํ›„ ๋ถ„๊ธฐ๋‹น ํˆฌ์ž์•ก์ด ๊ฐ€์žฅ ๋‚ฎ์€ ์ˆ˜์น˜์ž…๋‹ˆ๋‹ค.
2. ํˆฌ์ž ๊ฑด์ˆ˜๋„ 4๋ถ„๊ธฐ ์—ฐ์† ๊ฐ์†Œํ•˜์—ฌ 554๊ฑด์œผ๋กœ 2017๋…„ 4๋ถ„๊ธฐ ์ดํ›„ ์ตœ์ € ์ˆ˜์ค€์„ ๊ธฐ๋กํ–ˆ์Šต๋‹ˆ๋‹ค.
3. ์ง€๋‚œ ๋ถ„๊ธฐ ๊ฐ€์žฅ ํฐ ๊ทœ๋ชจ์˜ 5๊ฐœ ํˆฌ์ž ์ค‘ 3๊ฐœ๋Š” ์ƒ์„ฑํ˜• AI ์Šคํƒ€ํŠธ์—…์ด์—ˆ์Šต๋‹ˆ๋‹ค. ์ƒ์„ฑํ˜• AI๊ฐ€ AI ์„นํ„ฐ ์ „์ฒด์— ๋Œ€ํ•œ ๊ด€์‹ฌ๊ณผ ๋ชจ๋ฉ˜ํ…œ์„ ์ด๋Œ์–ด๊ฐ„๋‹ค๋Š” ๋ฉ”์‹œ์ง€๋กœ ์ฝ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ƒ์„ฑํ˜• AI ๋ถ€๋ฌธ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด AI ์„นํ„ฐ ์ „์ฒด์— ๋Œ€ํ•œ ๊ด‘๋ฒ”์œ„ํ•œ ๋ถˆํ™ฉ์„ ๊ทน๋ณตํ•˜๊ธฐ๋Š” ์—ญ๋ถ€์กฑ์ด์—ˆ๋‹ค๋Š” ํ‰๊ฐ€์ž…๋‹ˆ๋‹ค.
4. 2023๋…„ 1๋ถ„๊ธฐ์— 5๊ฐœ์˜ ์ƒˆ๋กœ์šด AI ์œ ๋‹ˆ์ฝ˜์ด ๋“ฑ์žฅํ–ˆ์œผ๋ฉฐ, ๊ทธ์ค‘ 3๊ฐœ๋Š” ์ƒ์„ฑํ˜• AI ๊ธฐ์—…์ด์—ˆ์Šต๋‹ˆ๋‹ค: Anthropic, Adept, Character.AI. ๋ฏธ๊ตญ์€ AI ์œ ๋‹ˆ์ฝ˜์˜ ์ˆ˜์ค‘ 64%๋ฅผ ๋ฐฐ์ถœํ–ˆ์Šต๋‹ˆ๋‹ค.
5. AI์•  ๋Œ€ํ•œ VCํˆฌ์ž ์ค‘ Late stage์— ๋Œ€ํ•œ ํˆฌ์ž๋Š” ๋”์šฑ ๊ธ‰๊ฒฉํžˆ ๊ฐ์†Œํ•˜์—ฌ 25๋งŒ ๋‹ฌ๋Ÿฌ๋กœ ํŒฌ๋ฐ๋ฏน ์ด์ „ ์ˆ˜์ค€๋ณด๋‹ค ์˜คํžˆ๋ ค ๋‚ฎ์€ ๊ทœ๋ชจ๋ฅผ ๋ณด์˜€์Šต๋‹ˆ๋‹ค.
6. ๋ฏธ๊ตญ ์ „๋ฐ˜์ ์œผ๋กœ AI ํˆฌ์ž๋Š” ์ „ ๋ถ„๊ธฐ ๋Œ€๋น„ 27% ๊ฐ์†Œํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค๋ฆฌ์ฝ˜๋ฐธ๋ฆฌ๋Š” ๋ฐ˜๋“ฑํ•˜์—ฌ ์ง์ „ ๋ถ„๊ธฐ ๋Œ€๋น„ ํˆฌ์ž๊ธˆ์ด 41% ์ฆ๊ฐ€ํ•˜๊ณ  ๊ฑฐ๋ž˜๊ฑด ์ˆ˜ ๊ธฐ์ค€ 20% ์ฆ๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ฃผ๋กœ ์ƒ์„ฑํ˜• AI ์Šคํƒ€ํŠธ์—…์— ๋Œ€ํ•œ ํˆฌ์ž๊ฐ€ ๋Œ€๋ถ€๋ถ„์ด์—ˆ์Šต๋‹ˆ๋‹ค.
7. ์•„์‹œ์•„์— ๊ธฐ๋ฐ˜์„ ๋‘” ์Šคํƒ€ํŠธ์—…์— ๋Œ€ํ•œ ํˆฌ์ž๋Š” ๊ธ‰๊ฐํ•˜์—ฌ 2016๋…„ 4๋ถ„๊ธฐ ์ดํ›„ ์ตœ์ € ์ˆ˜์ค€์— ๋„๋‹ฌํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ์ฃผ๋กœ ์ค‘๊ตญ์—์„œ AI ํˆฌ์ž ํ™œ๋™์ด ๋‘”ํ™”๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ๋ถ„์„๋ฉ๋‹ˆ๋‹ค. ์œ ๋Ÿฝ์˜ AI ์ž๊ธˆ ์กฐ๋‹ฌ๋„ ํ•˜๋ฝํ–ˆ์ง€๋งŒ ํŒฌ๋ฐ๋ฏน ์ด์ „ ์ˆ˜์ค€์„ ์œ ์ง€ํ–ˆ์Šต๋‹ˆ๋‹ค.
8. ์ „ ๋ถ„๊ธฐ ๋Œ€๋น„ AI ๊ธฐ์—…์˜ ์ธ์ˆ˜ํ•ฉ๋ณ‘(M&A) ๊ฑฐ๋ž˜ ๊ฑด์ˆ˜๋Š” 12% ์ฆ๊ฐ€ํ–ˆ์ง€๋งŒ, ๊ธฐ์—…๊ณต๊ฐœ(IPO) ๋ฐ ํŠน์ˆ˜๋ชฉ์  ์ธ์ˆ˜ํ•ฉ๋ณ‘ ํšŒ์‚ฌ(SPAC)์™€ ๊ฐ™์€ Exit ์‚ฌ๋ก€๋Š” ์ „๋ฌดํ–ˆ์Šต๋‹ˆ๋‹ค.
https://fleuret.org/public/lbdl.pdf

๋ชจ๋ฐ”์ผ์—์„œ ์ฝ๊ธฐ ์ข‹์€ ํ˜•์‹์˜ Deep Learning Content
DeepL 2017๋…„ ๋…์ผ์—์„œ ์ฐฝ์—…

2019๋…„๋ถ€ํ„ฐ ๊ตฌ๊ธ€ ๋ฒˆ์—ญ๊ธฐ๋ณด๋‹ค ๊ฒ€์ƒ‰์–‘์ด ๋Š˜์–ด๋‚จ.
Perplexity๋Š” ๊พธ์ค€ํžˆ ๊ฒ€์ƒ‰๊ด€๋ จํ•ด์„œ ๋Š˜๊ณ  ์žˆ์Œ.

Neeva๋Š” ์ถœ์‹œ ์ดํ›„ ์ž ๊น Traffic์ด ์žˆ์—ˆ๋‹ค๊ฐ€ ๊ณ„์† ์ •์ฒด.

Auto GPT๋„ ์ตœ๊ทผ ํฌ๊ฒŒ ์ธ๊ธฐ๋ฅผ ๋Œ์—ˆ๋‹ค๊ฐ€ ๋‹ค์‹œ ๊ฐ์†Œ์„ธ.