๐ก AI ์ ํ์ UX๋ ๋ฌด์์ด ๋ฌ๋ผ์ผํ ๊น? - (1) ์๋์ ํจ์
Vrew, ๋คผํผ, ๋ฆด๋ฆฌ์คAI ๊น์ง 3๊ฐ์ AI ์ ํ์ ๋ง๋ค๋ฉฐ ๋ฐฐ์ฐ๊ณ ๋๊ผ๋ ๊ฒ๋ค์ ํ๋์ฉ ๊ณต์ ํด๋ณด๋ คํฉ๋๋ค ๐
์ธ๊ณต์ง๋ฅ์ ๋๋ผ์ด ๋ฐ์ ์ผ๋ก, ์ ๋ง ๋ง์ ์ธ๊ฐ์ ์ง์ ์์ ์ โ์๋ํโํ ์ ์๋ ๊ธฐํ๊ฐ ์ด๋ฆฌ๊ณ ์์ต๋๋ค.
ํ์ง๋ง ์ญ์ค์ ์ด๊ฒ๋, ํ ๋ฆด๋ฆฌ์ค๋ ์ ํ์ UX์ ๋ํด ๋ ผ์ํ ๋ โ์๋์ ํจ์ โ์ ๋น ์ง์ง ๋ง์๋ ์ด์ผ๊ธฐ๋ฅผ ๋ง์ด ํฉ๋๋ค.
AI์๊ฒ ์ด๋ค ์ผ์ ์์ผฐ์ ๋ 100์ ์ ํด๋ด๋ ๊ฒฝ์ฐ๋ ๋ง์ง ์์ต๋๋ค. ๋๋ถ๋ถ 70์ ์ ๋์ ๊ทธ์น๊ณ ๋ง๋๋ค.
70์ ์ผ๋ก ์ด์๋ง ๋ง๋ค์ด ์ค๋ ์ถฉ๋ถํ ๋ง์ ์๊ฐ์ ๋จ์ถํด์ฃผ๋ ์๋ฏธ ์๋ ๊ฒ์ด ์๋๊น? ๋ผ๊ณ ์๊ฐํ ์๋ ์๊ฒ ์ต๋๋ค. ํ์ง๋ง ์ฌ์ฉ์์ ์ํฌํ๋ก์ฐ๋ฅผ ๋ฐ๋ผ๊ฐ๋ค๋ณด๋ฉด, ๊ฒฐ๊ตญ ์ํ๋ ๋ชฉ์ ์ ๋ฌ์ฑํ๊ธฐ ์ํด์๋ AI๊ฐ ๋ง๋ค์ด์ค 70์ ์ง๋ฆฌ ๊ฒฐ๊ณผ๋ฌผ์ ๋ค ๋ถ์๊ณ ์ฒ์๋ถํฐ 100์ ๋ง๋ค์ด์ผ ํ๋ ๊ฒฝ์ฐ๊ฐ ๋น๋ฒํ ๋ฐ์ํฉ๋๋ค.
์ด๋ฐ ์ ํ์ ๊ฒฝ์ฐ ์ฌ์ฉ์๋ค์ด ์ฒ์์ โ์~ ์ ๊ธฐํ๋ค~โ๋ผ๊ณ ๋ฐ์ํ์ง๋ง, ์ค์ ๋ก๋ ์ธ๋งํ ๋ ๋ฒจ๊น์ง ๊ฐ์ง ๋ชปํด ๋ฆฌํ ์ ์ด ์ ์ ๋์ค๊ฒ ๋ฉ๋๋ค. (์ค์ ๋ก ์ธ์ฝฐ์ด์ด ๋ฆฌํฌํธ์ ๋ฐ๋ฅด๋ฉด ๊ธฐ์กด ๊ธฐ์ ๋ค์ ๋นํด AI๊ธฐ์ ๋ค์ ๋ฆฌํ ์ ์ ์์ง ๋งค์ฐ ๋ฎ์ต๋๋ค)
์ด๋ฐ ํ์์ ์ ํฌ๋ โ์๋์ ํจ์ โ์ด๋ผ ๋ถ๋ฆ ๋๋ค.
๊ทธ๋ผ ๋๋จธ์ง 30์ ์ ์ด๋ป๊ฒ ์ฑ์์ผ ํ ๊น์?
์์ง๋์ด๋ง๊ณผ UX๋ ์ด์ด๋ก ๋ง์ ๋ถ๋ถ์ ํด๊ฒฐํ ์ ์์์ต๋๋ค.
์ ํฌ ์ ํ์ผ๋ก ์ฌ๋ก๋ฅผ ๋ค์ด๋ณด๊ฒ ์ต๋๋ค.
๋ฆด๋ฆฌ์คAI๋ ์์ ์์ฝ ์๋น์ค๋ฅผ ์ ๊ณตํ๊ณ ์๋๋ฐ์,
์์ฝ์ด ๊ฐํน ๋ถ์ ํํ๊ฑฐ๋ ์ง๋์น๊ฒ ์ถ์ฝ๋์ด ์ ๋ขฐ๋์ ์์ฌ์ด ์๊ธฐ๋ ๋ฌธ์ ๊ฐ ์์์ต๋๋ค. ๊ธฐ์กด์ ๋ค๋ฅธ ์์ ์์ฝ ์๋น์ค๋ฅผ ์ด์ฉํด๋ดค์ ๋, ์ ๋ขฐ๋๊ฐ ์์ฌ๊ฐ ๋ ์ฌ์ฉ์๊ฐ ์ทจํ ์ ์๋ ์ก์ ์ด ์์ด ๊ฒฐ๊ตญ์ ์์์ ์ฒ์๋ถํฐ ๋ค์ ๋๋ ค๋ณด๊ฒ ๋๋ ๋ถํธํจ์ ๋๊ผ์ต๋๋ค.
๊ทธ๋์ ์ ํฌ๋ 1) ์์ฝ ๋ฌธ๋จ๋ณ๋ก ์์ฝ์ ๊ทผ๊ฑฐ๊ฐ ๋๋ ์๋ฌธ์คํฌ๋ฆฝํธ๋ฅผ ๋ฐ๋ก ์๋์ ๋ฐฐ์นํ๊ณ , 2) ์์ ์ฌ์ ํ๋ ์ด์ด๋ฅผ ์ข์ธก์ ํญ์ ๊ณ ์ ์์ผ ์์ฝ์ ํด๋นํ๋ ๊ตฌ๊ฐ์ ์์๊ณผ ์์ฝ๋ ธํธ๋ฅผ ํจ๊ป ๋ณผ ์ ์๋๋ก ์ฌ์ฉ์ ๊ฒฝํ์ ์ค๊ณํ์ต๋๋ค. 3) ์ต๊ทผ์๋ ์ดํด๊ฐ ์ ์ ๊ฐ๋ ์ฉ์ด๋ฅผ ํด๋ฆญํ๋ฉด ์์์ ๋งฅ๋ฝ ์์์ ํ์ดํด์ฃผ๋ ๊ธฐ๋ฅ๋ ์ถ๊ฐํ์ต๋๋ค.
(UX ๋ณด๋ฌ๊ฐ๊ธฐ : https://lnkd.in/grYf4ygu)
์ด๋ฌํ ์ ํ ์ฒ ํ์ ๊ฐ์ง๊ณ ๊ณ์ ์๋น์ค๋ฅผ ๊ฐ์ ํ๋ค๋ณด๋, D+1 Retention๋ 30%๋์์ ์์ํด ํ์ฌ 56%๋ก ๊ณ์ ์ฆ๊ฐํ๋ ์ค์ ๋๋ค.
https://www.linkedin.com/posts/yein-kim-a33627219_ai-%EC%A0%9C%ED%92%88%EC%9D%98-ux%EB%8A%94-%EB%AC%B4%EC%97%87%EC%9D%B4-%EB%8B%AC%EB%9D%BC%EC%95%BC%ED%95%A0%EA%B9%8C-1-%EC%9E%90%EB%8F%99%EC%9D%98-%ED%95%A8%EC%A0%95-vrew-activity-7167747546352742401-VLTq?utm_source=share&utm_medium=member_desktop
Vrew, ๋คผํผ, ๋ฆด๋ฆฌ์คAI ๊น์ง 3๊ฐ์ AI ์ ํ์ ๋ง๋ค๋ฉฐ ๋ฐฐ์ฐ๊ณ ๋๊ผ๋ ๊ฒ๋ค์ ํ๋์ฉ ๊ณต์ ํด๋ณด๋ คํฉ๋๋ค ๐
์ธ๊ณต์ง๋ฅ์ ๋๋ผ์ด ๋ฐ์ ์ผ๋ก, ์ ๋ง ๋ง์ ์ธ๊ฐ์ ์ง์ ์์ ์ โ์๋ํโํ ์ ์๋ ๊ธฐํ๊ฐ ์ด๋ฆฌ๊ณ ์์ต๋๋ค.
ํ์ง๋ง ์ญ์ค์ ์ด๊ฒ๋, ํ ๋ฆด๋ฆฌ์ค๋ ์ ํ์ UX์ ๋ํด ๋ ผ์ํ ๋ โ์๋์ ํจ์ โ์ ๋น ์ง์ง ๋ง์๋ ์ด์ผ๊ธฐ๋ฅผ ๋ง์ด ํฉ๋๋ค.
AI์๊ฒ ์ด๋ค ์ผ์ ์์ผฐ์ ๋ 100์ ์ ํด๋ด๋ ๊ฒฝ์ฐ๋ ๋ง์ง ์์ต๋๋ค. ๋๋ถ๋ถ 70์ ์ ๋์ ๊ทธ์น๊ณ ๋ง๋๋ค.
70์ ์ผ๋ก ์ด์๋ง ๋ง๋ค์ด ์ค๋ ์ถฉ๋ถํ ๋ง์ ์๊ฐ์ ๋จ์ถํด์ฃผ๋ ์๋ฏธ ์๋ ๊ฒ์ด ์๋๊น? ๋ผ๊ณ ์๊ฐํ ์๋ ์๊ฒ ์ต๋๋ค. ํ์ง๋ง ์ฌ์ฉ์์ ์ํฌํ๋ก์ฐ๋ฅผ ๋ฐ๋ผ๊ฐ๋ค๋ณด๋ฉด, ๊ฒฐ๊ตญ ์ํ๋ ๋ชฉ์ ์ ๋ฌ์ฑํ๊ธฐ ์ํด์๋ AI๊ฐ ๋ง๋ค์ด์ค 70์ ์ง๋ฆฌ ๊ฒฐ๊ณผ๋ฌผ์ ๋ค ๋ถ์๊ณ ์ฒ์๋ถํฐ 100์ ๋ง๋ค์ด์ผ ํ๋ ๊ฒฝ์ฐ๊ฐ ๋น๋ฒํ ๋ฐ์ํฉ๋๋ค.
์ด๋ฐ ์ ํ์ ๊ฒฝ์ฐ ์ฌ์ฉ์๋ค์ด ์ฒ์์ โ์~ ์ ๊ธฐํ๋ค~โ๋ผ๊ณ ๋ฐ์ํ์ง๋ง, ์ค์ ๋ก๋ ์ธ๋งํ ๋ ๋ฒจ๊น์ง ๊ฐ์ง ๋ชปํด ๋ฆฌํ ์ ์ด ์ ์ ๋์ค๊ฒ ๋ฉ๋๋ค. (์ค์ ๋ก ์ธ์ฝฐ์ด์ด ๋ฆฌํฌํธ์ ๋ฐ๋ฅด๋ฉด ๊ธฐ์กด ๊ธฐ์ ๋ค์ ๋นํด AI๊ธฐ์ ๋ค์ ๋ฆฌํ ์ ์ ์์ง ๋งค์ฐ ๋ฎ์ต๋๋ค)
์ด๋ฐ ํ์์ ์ ํฌ๋ โ์๋์ ํจ์ โ์ด๋ผ ๋ถ๋ฆ ๋๋ค.
๊ทธ๋ผ ๋๋จธ์ง 30์ ์ ์ด๋ป๊ฒ ์ฑ์์ผ ํ ๊น์?
์์ง๋์ด๋ง๊ณผ UX๋ ์ด์ด๋ก ๋ง์ ๋ถ๋ถ์ ํด๊ฒฐํ ์ ์์์ต๋๋ค.
์ ํฌ ์ ํ์ผ๋ก ์ฌ๋ก๋ฅผ ๋ค์ด๋ณด๊ฒ ์ต๋๋ค.
๋ฆด๋ฆฌ์คAI๋ ์์ ์์ฝ ์๋น์ค๋ฅผ ์ ๊ณตํ๊ณ ์๋๋ฐ์,
์์ฝ์ด ๊ฐํน ๋ถ์ ํํ๊ฑฐ๋ ์ง๋์น๊ฒ ์ถ์ฝ๋์ด ์ ๋ขฐ๋์ ์์ฌ์ด ์๊ธฐ๋ ๋ฌธ์ ๊ฐ ์์์ต๋๋ค. ๊ธฐ์กด์ ๋ค๋ฅธ ์์ ์์ฝ ์๋น์ค๋ฅผ ์ด์ฉํด๋ดค์ ๋, ์ ๋ขฐ๋๊ฐ ์์ฌ๊ฐ ๋ ์ฌ์ฉ์๊ฐ ์ทจํ ์ ์๋ ์ก์ ์ด ์์ด ๊ฒฐ๊ตญ์ ์์์ ์ฒ์๋ถํฐ ๋ค์ ๋๋ ค๋ณด๊ฒ ๋๋ ๋ถํธํจ์ ๋๊ผ์ต๋๋ค.
๊ทธ๋์ ์ ํฌ๋ 1) ์์ฝ ๋ฌธ๋จ๋ณ๋ก ์์ฝ์ ๊ทผ๊ฑฐ๊ฐ ๋๋ ์๋ฌธ์คํฌ๋ฆฝํธ๋ฅผ ๋ฐ๋ก ์๋์ ๋ฐฐ์นํ๊ณ , 2) ์์ ์ฌ์ ํ๋ ์ด์ด๋ฅผ ์ข์ธก์ ํญ์ ๊ณ ์ ์์ผ ์์ฝ์ ํด๋นํ๋ ๊ตฌ๊ฐ์ ์์๊ณผ ์์ฝ๋ ธํธ๋ฅผ ํจ๊ป ๋ณผ ์ ์๋๋ก ์ฌ์ฉ์ ๊ฒฝํ์ ์ค๊ณํ์ต๋๋ค. 3) ์ต๊ทผ์๋ ์ดํด๊ฐ ์ ์ ๊ฐ๋ ์ฉ์ด๋ฅผ ํด๋ฆญํ๋ฉด ์์์ ๋งฅ๋ฝ ์์์ ํ์ดํด์ฃผ๋ ๊ธฐ๋ฅ๋ ์ถ๊ฐํ์ต๋๋ค.
(UX ๋ณด๋ฌ๊ฐ๊ธฐ : https://lnkd.in/grYf4ygu)
์ด๋ฌํ ์ ํ ์ฒ ํ์ ๊ฐ์ง๊ณ ๊ณ์ ์๋น์ค๋ฅผ ๊ฐ์ ํ๋ค๋ณด๋, D+1 Retention๋ 30%๋์์ ์์ํด ํ์ฌ 56%๋ก ๊ณ์ ์ฆ๊ฐํ๋ ์ค์ ๋๋ค.
https://www.linkedin.com/posts/yein-kim-a33627219_ai-%EC%A0%9C%ED%92%88%EC%9D%98-ux%EB%8A%94-%EB%AC%B4%EC%97%87%EC%9D%B4-%EB%8B%AC%EB%9D%BC%EC%95%BC%ED%95%A0%EA%B9%8C-1-%EC%9E%90%EB%8F%99%EC%9D%98-%ED%95%A8%EC%A0%95-vrew-activity-7167747546352742401-VLTq?utm_source=share&utm_medium=member_desktop
lnkd.in
LinkedIn
This link will take you to a page thatโs not on LinkedIn
This shall now be known as the Paul Graham Rule - absolute monopolies endanger themselves - they lose the self correcting imperatives of competition. Now layer on the greatest Innovatorโs Dilemma in the history of business. $GOOG needs @elonmusk level course correction!
https://x.com/altcap/status/1761745085954195797?s=20
https://x.com/altcap/status/1761745085954195797?s=20
X (formerly Twitter)
Brad Gerstner (@altcap) on X
This shall now be known as the Paul Graham Rule - absolute monopolies endanger themselves - they lose the self correcting imperatives of competition. Now layer on the greatest Innovatorโs Dilemma in the history of business. $GOOG needs @elonmusk level courseโฆ
You just keep grinding. 90%of the battle is just staying alive in business and having oxygen to keep trying things and then eventually if you are lucky things can really break in your favors.
โข ๋ง์ดํฌ๋ก์ํํธ๊ฐ ํ๋์ค ์ธ๊ณต์ง๋ฅ ์คํํธ์
๋ฏธ์คํธ๋๊ณผ ํ์ฝ์ ๋งบ์
โข ์ด ํ์ฝ์ ๋ง์ดํฌ๋ก์ํํธ๊ฐ OpenAI ์ด์ธ์ ๋ถ์ผ๋ก ํ๋์ ๋ํ๋ ค๋ ์๋์ ์ผํ
โข ๋ฏธ์คํธ๋์ ํ๋ฆฌ ๊ธฐ๋ฐ์ ํ์ฌ๋ก, AI ๋ชจ๋ธ์ ์์ฅ์ ์ถ์ํ๋ ๋ฐ ๋์์ ๋ฐ๊ฒ ๋จ
ํ์ฝ์ ๋ด์ฉ
โข ๋ง์ดํฌ๋ก์ํํธ๋ ๋ฏธ์คํธ๋์ ํฌ์ํ๋ฉฐ, ๊ธ์ต์ ์ธ ์ธ๋ถ ์ฌํญ์ ๊ณต๊ฐ๋์ง ์์
โข ํ์ฝ์๋ ์ ๋ฝ ์ ์ญ์ ์ ๋ถ๋ฅผ ์ํ ์ ํ๋ฆฌ์ผ์ด์ ๊ฐ๋ฐ์ ์ํ ์ฐ๊ตฌ ๋ฐ ๊ฐ๋ฐ ํ๋ ฅ ํฌํจ
โข ์ด AI ๋ชจ๋ธ๋ค์ ๊ณต๊ณต ๋ถ๋ฌธ์ ํน์ ์๊ตฌ ์ฌํญ์ ํด๊ฒฐํ๋ ๋ฐ ์ฌ์ฉ๋ ์์
๋ฏธ์คํธ๋์ ์์น
โข ๋ฏธ์คํธ๋์ ๋ง์ดํฌ๋ก์ํํธ์ Azure ํด๋ผ์ฐ๋ ์ปดํจํ ํ๋ซํผ์์ ์์ ์ ์ธ์ด ๋ชจ๋ธ์ ์ ๊ณตํ๋ ๋ ๋ฒ์งธ ํ์ฌ
โข ๋ฏธ์คํธ๋์ ๊ณต๋ ์ฐฝ๋ฆฝ์ ๊ฒธ CEO์ธ ์์ ๋ฉ์ฌ๋ ๋ง์ดํฌ๋ก์ํํธ์ ์ ๋ขฐ๊ฐ ์ค์ํ ๋ฐ์ ์ด๋ผ๊ณ ์ธ๊ธ
๋ง์ดํฌ๋ก์ํํธ์ OpenAI
โข ๋ง์ดํฌ๋ก์ํํธ๋ ์ด๋ฏธ ์ํ๋์์ค์ฝ ๊ธฐ๋ฐ์ OpenAI์ ์ฝ 130์ต ๋ฌ๋ฌ๋ฅผ ํฌ์
โข ๋ฏธ๊ตญ, EU, ์๊ตญ์ ๊ฒฝ์ ๊ฐ์ ๊ธฐ๊ด์์ ์ด ํ๋ ฅ ๊ด๊ณ๋ฅผ ๊ฒํ ์ค
โข ๋ง์ดํฌ๋ก์ํํธ๋ OpenAI๋ฅผ ํต์ ํ์ง ์์ผ๋ฉฐ, ๋ ํ์ฌ๋ ์ค์ํ ํํธ๋๋ผ๊ณ ๊ฐ์กฐ
AI ๊ฒฝ์ ์ ๋ถ์
โข ๊ตฌ๊ธ๊ณผ ์๋ง์กด๊ณผ ๊ฐ์ ๋ค๋ฅธ ๋ํ ๊ธฐ์ ํ์ฌ๋ค๋ ์์ฑ AI์ ๋ํ ํฌ์๋ฅผ ํ๋
โข ์์ฑ AI๋ ํ ์คํธ, ์ด๋ฏธ์ง, ์ฝ๋๋ฅผ ๋ช ์ด ๋ง์ ์์ฑํ ์ ์๋ ์ํํธ์จ์ด
โข ์ด ๊ธฐ์ ์ ์ ์ธ๊ณ ์ฐ์ ์ ๋ณํ์ํฌ ๊ฒ์ผ๋ก ๋ถ์๊ฐ๋ค์ ๋ฏฟ์
๋ฏธ์คํธ๋์ ๊ธฐ์ ๊ณผ ๊ฐ์น
โข ๋ฏธ์คํธ๋์ ๋๊ท๋ชจ ์ธ์ด ๋ชจ๋ธ์ ๊ตฌ์ถํ๋ฉฐ, ์ด๋ ์์ฑ AI ์ ํ์ ๊ตฌ๋ํ๋ ๊ธฐ์
โข 12์์ ์ฝ 20์ต ์ ๋ก์ ๊ฐ์น ํ๊ฐ๋ฅผ ๋ฐ์ผ๋ฉฐ ์ฝ 4์ต ์ ๋ก ๊ท๋ชจ์ ํ๋ฉ ๋ผ์ด๋๋ฅผ ํ๋ณด
โข ๋ฏธ์คํธ๋์ ๋ชจ๋ธ์ ์คํ ์์ค๋ก, ๊ธฐ์ ์ธ๋ถ ์ฌํญ์ด ๊ณต๊ฐ์ ์ผ๋ก ๊ณต๊ฐ๋ ์์
AI ๋ชจ๋ธ ๊ฐ๋ฐ์ ์ธํ๋ผ
โข ์๋ก์ด AI ๋ชจ๋ธ์ ํ๋ จํ๊ณ ๊ฐ๋ฐํ๋ ๋ฐ ํ์ํ ์ธํ๋ผ๋ ๋ง๋ํ ๋น์ฉ์ด ๋ฌ
โข ๊ฒฝ์ํ ์ ์๋ ํ์ฌ๋ ๋ช ์ญ ๊ฐ์ ๋ถ๊ณผ
โข ๋ง์ดํฌ๋ก์ํํธ๋ ๋ ์ผ๊ณผ ์คํ์ธ์ ์๋ก์ด AI ๋ฐ์ดํฐ ์ผํฐ์ 56์ต ๋ฌ๋ฌ๋ฅผ ํฌ์ํ ๊ณํ ๋ฐํ
AI ์นฉ ์ค๊ณ ๋ฐ ๊ฐ๋ฐ์ ๋ํ ํฌ์
โข AI ์นฉ ์ค๊ณ ๋ฐ ๊ฐ๋ฐ์ ๋ ๋ง์ ํฌ์๊ฐ ์ด๋ฃจ์ด์ง ๊ฒ์ผ๋ก ์์
โข ์๋น๋์๋ ์ด ๋ถ์ผ๋ฅผ ์ ๋ํ๋ฉฐ, ์ต๊ทผ ๊ฐ์น ์์์์ ์๋ง์กด๊ณผ ๊ตฌ๊ธ ๋ชจํ์ฌ ์ํ๋ฒณ์ ์์ง๋ฆ
โข ๋ง์ดํฌ๋ก์ํํธ๋ ์ธํ ๊ณผ AMD์ ๊ฐ์ ๊ฒฝ์์ฌ์ ํจ๊ป ์์ฒด ๋ฐ๋์ฒด๋ฅผ ๊ฐ๋ฐํ ํฌ์ ๊ณํ
GNโบ์ ์๊ฒฌ
โข ์ด ํ์ฝ์ ๋ง์ดํฌ๋ก์ํํธ๊ฐ AI ๋ถ์ผ์์ ์์ฌ์ ์ํฅ๋ ฅ์ ํ๋ํ๊ณ ์ ํ๋ ์ ๋ต์ ์์ง์์ ๋ณด์ฌ์ค. OpenAI์์ ํ๋ ฅ ์ธ์๋ ๋ค์ํ AI ๊ธฐ์ ์ ํ๋ณดํ๋ ค๋ ์๋๊ฐ ์ฟ๋ณด์
โข ๋ฏธ์คํธ๋๊ณผ์ ํํธ๋์ญ์ ๋ง์ดํฌ๋ก์ํํธ๊ฐ ์คํ ์์ค AI ๋ชจ๋ธ์ ๋ํ ์ง์์ ๊ณ์ํ๊ฒ ๋ค๋ ์์ง๋ฅผ ๋ํ๋. ์ด๋ ๊ฐ๋ฐ์ ์ปค๋ฎค๋ํฐ์ ๋ ๋ง์ ํ๋ ฅ๊ณผ ํ์ ์ ๊ธฐํ๋ฅผ ์ ๊ณตํ ์ ์์
โข AI ๊ธฐ์ ์ ๋น ๋ฅธ ๋ฐ์ ๊ณผ ์์ ํ๋ ๋ฐ์ดํฐ ํ๋ผ์ด๋ฒ์, ์๊ณ ๋ฆฌ์ฆ ํฌ๋ช ์ฑ, ๊ทธ๋ฆฌ๊ณ ๊ธฐ์ ์ ์ค๋ฆฌ์ ์ฌ์ฉ์ ๋ํ ๋ ผ์๋ฅผ ๋์ฑ ์ค์ํ๊ฒ ๋ง๋ฆ. ์ด๋ฌํ ์ด์๋ค์ AI ๊ธฐ์ ์ ๋์ ํ ๋ ๋ฐ๋์ ๊ณ ๋ คํด์ผ ํ ์ฌํญ์
โข ๋ง์ดํฌ๋ก์ํํธ๊ฐ AI ์นฉ ์ค๊ณ ๋ฐ ๊ฐ๋ฐ์ ํฌ์ํ ๊ณํ์ ๋ฐํ ๊ฒ์, AI ๊ธฐ์ ์ ํต์ฌ ๊ตฌ์ฑ ์์์ธ ํ๋์จ์ด์ ๋ํ ํต์ ๋ฅผ ๊ฐํํ๋ ค๋ ์๋๋ก ๋ณผ ์ ์์. ์ด๋ ์ฅ๊ธฐ์ ์ผ๋ก AI ์์ฅ์์์ ๊ฒฝ์๋ ฅ์ ๋์ด๋ ๋ฐ ๊ธฐ์ฌํ ์ ์์
โข AI ๋ชจ๋ธ์ ๊ฐ๋ฐํ๊ณ ํ๋ จํ๋ ๋ฐ ํ์ํ ์ธํ๋ผ์ ๋น์ฉ๊ณผ ๋ณต์ก์ฑ์ ๊ณ ๋ คํ ๋, ํด๋ผ์ฐ๋ ์๋น์ค ์ ๊ณต์ ์ฒด์์ ํ๋ ฅ์ ์ค์๊ธฐ์ ์ด๋ ์คํํธ์ ์๊ฒ ์ค์ํ ์์์ด ๋ ์ ์์. ์ด๋ฌํ ํ๋ ฅ์ ๊ธฐ์ ํ์ ๊ณผ ์์ฅ ๋ค์์ฑ์ ์ด์งํ๋ ๋ฐ ์ค์ํ ์ญํ ์ ํ ๊ฒ์
https://www.ft.com/content/cd6eb51a-3276-450f-87fd-97e8410db9eb
โข ์ด ํ์ฝ์ ๋ง์ดํฌ๋ก์ํํธ๊ฐ OpenAI ์ด์ธ์ ๋ถ์ผ๋ก ํ๋์ ๋ํ๋ ค๋ ์๋์ ์ผํ
โข ๋ฏธ์คํธ๋์ ํ๋ฆฌ ๊ธฐ๋ฐ์ ํ์ฌ๋ก, AI ๋ชจ๋ธ์ ์์ฅ์ ์ถ์ํ๋ ๋ฐ ๋์์ ๋ฐ๊ฒ ๋จ
ํ์ฝ์ ๋ด์ฉ
โข ๋ง์ดํฌ๋ก์ํํธ๋ ๋ฏธ์คํธ๋์ ํฌ์ํ๋ฉฐ, ๊ธ์ต์ ์ธ ์ธ๋ถ ์ฌํญ์ ๊ณต๊ฐ๋์ง ์์
โข ํ์ฝ์๋ ์ ๋ฝ ์ ์ญ์ ์ ๋ถ๋ฅผ ์ํ ์ ํ๋ฆฌ์ผ์ด์ ๊ฐ๋ฐ์ ์ํ ์ฐ๊ตฌ ๋ฐ ๊ฐ๋ฐ ํ๋ ฅ ํฌํจ
โข ์ด AI ๋ชจ๋ธ๋ค์ ๊ณต๊ณต ๋ถ๋ฌธ์ ํน์ ์๊ตฌ ์ฌํญ์ ํด๊ฒฐํ๋ ๋ฐ ์ฌ์ฉ๋ ์์
๋ฏธ์คํธ๋์ ์์น
โข ๋ฏธ์คํธ๋์ ๋ง์ดํฌ๋ก์ํํธ์ Azure ํด๋ผ์ฐ๋ ์ปดํจํ ํ๋ซํผ์์ ์์ ์ ์ธ์ด ๋ชจ๋ธ์ ์ ๊ณตํ๋ ๋ ๋ฒ์งธ ํ์ฌ
โข ๋ฏธ์คํธ๋์ ๊ณต๋ ์ฐฝ๋ฆฝ์ ๊ฒธ CEO์ธ ์์ ๋ฉ์ฌ๋ ๋ง์ดํฌ๋ก์ํํธ์ ์ ๋ขฐ๊ฐ ์ค์ํ ๋ฐ์ ์ด๋ผ๊ณ ์ธ๊ธ
๋ง์ดํฌ๋ก์ํํธ์ OpenAI
โข ๋ง์ดํฌ๋ก์ํํธ๋ ์ด๋ฏธ ์ํ๋์์ค์ฝ ๊ธฐ๋ฐ์ OpenAI์ ์ฝ 130์ต ๋ฌ๋ฌ๋ฅผ ํฌ์
โข ๋ฏธ๊ตญ, EU, ์๊ตญ์ ๊ฒฝ์ ๊ฐ์ ๊ธฐ๊ด์์ ์ด ํ๋ ฅ ๊ด๊ณ๋ฅผ ๊ฒํ ์ค
โข ๋ง์ดํฌ๋ก์ํํธ๋ OpenAI๋ฅผ ํต์ ํ์ง ์์ผ๋ฉฐ, ๋ ํ์ฌ๋ ์ค์ํ ํํธ๋๋ผ๊ณ ๊ฐ์กฐ
AI ๊ฒฝ์ ์ ๋ถ์
โข ๊ตฌ๊ธ๊ณผ ์๋ง์กด๊ณผ ๊ฐ์ ๋ค๋ฅธ ๋ํ ๊ธฐ์ ํ์ฌ๋ค๋ ์์ฑ AI์ ๋ํ ํฌ์๋ฅผ ํ๋
โข ์์ฑ AI๋ ํ ์คํธ, ์ด๋ฏธ์ง, ์ฝ๋๋ฅผ ๋ช ์ด ๋ง์ ์์ฑํ ์ ์๋ ์ํํธ์จ์ด
โข ์ด ๊ธฐ์ ์ ์ ์ธ๊ณ ์ฐ์ ์ ๋ณํ์ํฌ ๊ฒ์ผ๋ก ๋ถ์๊ฐ๋ค์ ๋ฏฟ์
๋ฏธ์คํธ๋์ ๊ธฐ์ ๊ณผ ๊ฐ์น
โข ๋ฏธ์คํธ๋์ ๋๊ท๋ชจ ์ธ์ด ๋ชจ๋ธ์ ๊ตฌ์ถํ๋ฉฐ, ์ด๋ ์์ฑ AI ์ ํ์ ๊ตฌ๋ํ๋ ๊ธฐ์
โข 12์์ ์ฝ 20์ต ์ ๋ก์ ๊ฐ์น ํ๊ฐ๋ฅผ ๋ฐ์ผ๋ฉฐ ์ฝ 4์ต ์ ๋ก ๊ท๋ชจ์ ํ๋ฉ ๋ผ์ด๋๋ฅผ ํ๋ณด
โข ๋ฏธ์คํธ๋์ ๋ชจ๋ธ์ ์คํ ์์ค๋ก, ๊ธฐ์ ์ธ๋ถ ์ฌํญ์ด ๊ณต๊ฐ์ ์ผ๋ก ๊ณต๊ฐ๋ ์์
AI ๋ชจ๋ธ ๊ฐ๋ฐ์ ์ธํ๋ผ
โข ์๋ก์ด AI ๋ชจ๋ธ์ ํ๋ จํ๊ณ ๊ฐ๋ฐํ๋ ๋ฐ ํ์ํ ์ธํ๋ผ๋ ๋ง๋ํ ๋น์ฉ์ด ๋ฌ
โข ๊ฒฝ์ํ ์ ์๋ ํ์ฌ๋ ๋ช ์ญ ๊ฐ์ ๋ถ๊ณผ
โข ๋ง์ดํฌ๋ก์ํํธ๋ ๋ ์ผ๊ณผ ์คํ์ธ์ ์๋ก์ด AI ๋ฐ์ดํฐ ์ผํฐ์ 56์ต ๋ฌ๋ฌ๋ฅผ ํฌ์ํ ๊ณํ ๋ฐํ
AI ์นฉ ์ค๊ณ ๋ฐ ๊ฐ๋ฐ์ ๋ํ ํฌ์
โข AI ์นฉ ์ค๊ณ ๋ฐ ๊ฐ๋ฐ์ ๋ ๋ง์ ํฌ์๊ฐ ์ด๋ฃจ์ด์ง ๊ฒ์ผ๋ก ์์
โข ์๋น๋์๋ ์ด ๋ถ์ผ๋ฅผ ์ ๋ํ๋ฉฐ, ์ต๊ทผ ๊ฐ์น ์์์์ ์๋ง์กด๊ณผ ๊ตฌ๊ธ ๋ชจํ์ฌ ์ํ๋ฒณ์ ์์ง๋ฆ
โข ๋ง์ดํฌ๋ก์ํํธ๋ ์ธํ ๊ณผ AMD์ ๊ฐ์ ๊ฒฝ์์ฌ์ ํจ๊ป ์์ฒด ๋ฐ๋์ฒด๋ฅผ ๊ฐ๋ฐํ ํฌ์ ๊ณํ
GNโบ์ ์๊ฒฌ
โข ์ด ํ์ฝ์ ๋ง์ดํฌ๋ก์ํํธ๊ฐ AI ๋ถ์ผ์์ ์์ฌ์ ์ํฅ๋ ฅ์ ํ๋ํ๊ณ ์ ํ๋ ์ ๋ต์ ์์ง์์ ๋ณด์ฌ์ค. OpenAI์์ ํ๋ ฅ ์ธ์๋ ๋ค์ํ AI ๊ธฐ์ ์ ํ๋ณดํ๋ ค๋ ์๋๊ฐ ์ฟ๋ณด์
โข ๋ฏธ์คํธ๋๊ณผ์ ํํธ๋์ญ์ ๋ง์ดํฌ๋ก์ํํธ๊ฐ ์คํ ์์ค AI ๋ชจ๋ธ์ ๋ํ ์ง์์ ๊ณ์ํ๊ฒ ๋ค๋ ์์ง๋ฅผ ๋ํ๋. ์ด๋ ๊ฐ๋ฐ์ ์ปค๋ฎค๋ํฐ์ ๋ ๋ง์ ํ๋ ฅ๊ณผ ํ์ ์ ๊ธฐํ๋ฅผ ์ ๊ณตํ ์ ์์
โข AI ๊ธฐ์ ์ ๋น ๋ฅธ ๋ฐ์ ๊ณผ ์์ ํ๋ ๋ฐ์ดํฐ ํ๋ผ์ด๋ฒ์, ์๊ณ ๋ฆฌ์ฆ ํฌ๋ช ์ฑ, ๊ทธ๋ฆฌ๊ณ ๊ธฐ์ ์ ์ค๋ฆฌ์ ์ฌ์ฉ์ ๋ํ ๋ ผ์๋ฅผ ๋์ฑ ์ค์ํ๊ฒ ๋ง๋ฆ. ์ด๋ฌํ ์ด์๋ค์ AI ๊ธฐ์ ์ ๋์ ํ ๋ ๋ฐ๋์ ๊ณ ๋ คํด์ผ ํ ์ฌํญ์
โข ๋ง์ดํฌ๋ก์ํํธ๊ฐ AI ์นฉ ์ค๊ณ ๋ฐ ๊ฐ๋ฐ์ ํฌ์ํ ๊ณํ์ ๋ฐํ ๊ฒ์, AI ๊ธฐ์ ์ ํต์ฌ ๊ตฌ์ฑ ์์์ธ ํ๋์จ์ด์ ๋ํ ํต์ ๋ฅผ ๊ฐํํ๋ ค๋ ์๋๋ก ๋ณผ ์ ์์. ์ด๋ ์ฅ๊ธฐ์ ์ผ๋ก AI ์์ฅ์์์ ๊ฒฝ์๋ ฅ์ ๋์ด๋ ๋ฐ ๊ธฐ์ฌํ ์ ์์
โข AI ๋ชจ๋ธ์ ๊ฐ๋ฐํ๊ณ ํ๋ จํ๋ ๋ฐ ํ์ํ ์ธํ๋ผ์ ๋น์ฉ๊ณผ ๋ณต์ก์ฑ์ ๊ณ ๋ คํ ๋, ํด๋ผ์ฐ๋ ์๋น์ค ์ ๊ณต์ ์ฒด์์ ํ๋ ฅ์ ์ค์๊ธฐ์ ์ด๋ ์คํํธ์ ์๊ฒ ์ค์ํ ์์์ด ๋ ์ ์์. ์ด๋ฌํ ํ๋ ฅ์ ๊ธฐ์ ํ์ ๊ณผ ์์ฅ ๋ค์์ฑ์ ์ด์งํ๋ ๋ฐ ์ค์ํ ์ญํ ์ ํ ๊ฒ์
https://www.ft.com/content/cd6eb51a-3276-450f-87fd-97e8410db9eb
Continuous Learning_Startup & Investment
OpenAI also is aiming to build a simulator which mimic the reality without gaps.
Modeling the world for action by generating pixels is as wasteful and doomed to failure.
If your goal is to train a world model for recognition or planning, using pixel-level prediction is a terrible idea," writes LeCun.
If your goal is to train a world model for recognition or planning, using pixel-level prediction is a terrible idea," writes LeCun.
First of all, really appreciate the team for sharing helpful insights and design decisions โ Sora is incredible and is set to transform the video generation community.
What we have learned so far:
- Architecture: Sora is built on our diffusion transformer (DiT) model (published in ICCV 2023) โ it's a diffusion model with a transformer backbone, in short:
DiT = [VAE encoder + ViT + DDPM + VAE decoder].
According to the report, it seems there are not much additional bells and whistles.
- "Video compressor network": Looks like it's just a VAE but trained on raw video data. Tokenization probably plays a significant role in getting good temporal consistency. By the way, VAE is a ConvNet, so DiT technically is a hybrid model ;)
When Bill and I were working on the DiT project, instead of creating novelty (see my last tweet๐คทโโ๏ธ), we prioritized two aspects: simplicity and scalability. These priorities offer more than just conceptual advantages.
- Simplicity means flexibility. The cool thing about vanilla ViT that people often miss is how it makes your model way more flexible when it comes to working with input data. For example, in masked autoencoder (MAE), ViT helped us to just process the visible patches and ignore the masked ones. And similarly, Sora "can control the size of generated videos by arranging randomly-initialized patches in an appropriately-sized grid." UNet does not directly offer this flexibility.
๐Speculation: Sora might also use Patch nโ Pack (NaViT) from Google, to make DiT adaptable to variable resolutions/durations/aspect ratios.
- Scalability is the core theme of the DiT paper. First, an optimized DiT runs much faster than UNet in terms of wall-clock time per Flop. More importantly, Sora demonstrated that the DiT scaling law applies not just to images but now to videos as well -- Sora replicates the visual scaling behavior observed in DiT.
๐Speculation: In the Sora report, the quality for the first video is quite bad, I suspect it is using a base model size. A back-of-the-envelope calculation: DiT XL/2 is 5X GFLOPs of the B/2 model, so the final 16X compute model is probably 3X DiT-XL model size, which means Sora might have ~3B parameters โ if true, this is not an unreasonable model size . It could suggest that training the Sora model might not require as many GPUs as one would anticipate โ I would expect very fast iterations going forward.
The key takeaway is from the "Emerging simulation capabilities" section. Before Sora, it was unclear if long form consistency could emerge on its own or if it required complex subject-driven generation pipelines or even physics simulators. OpenAI has shown that, though not perfect, these behaviors can be achieved with end-to-end training. Yet, two essential points have not been discussed.
1. Training Data: No talk about training source and construction at all, which might just imply data is likely the most critical factor for Sora's success.
๐Speculations: There's already much speculation about data from game engines. I also anticipate the inclusion of movies, documentaries, cinematic long takes, etc. Quality really matters. Super curious where Sora got this data from (surely not YouTube, right?).
2. (Auto-regressive) Long Video Generation: a significant breakthrough in Sora is the ability to generate very long videos. The difference between producing a 2-second video and a 1-minute video is monumental.
In Sora, this is probably achieved through joint frame prediction that allows auto-regressive sampling, yet a major challenge is how to address error accumulation and maintain quality/consistency through time. A very long (and bi-directional) context for conditioning? Or could scaling up simply lessen the issue? These technical details can be super important and hopefully will be demystified in the future
https://x.com/gabor/status/1758295719788822866?s=46&t=h5Byg6Wosg8MJb4pbPSDow
DiT shines in Sora. Our team at NYU has recently released a new DiT model, called SiT.
What we have learned so far:
- Architecture: Sora is built on our diffusion transformer (DiT) model (published in ICCV 2023) โ it's a diffusion model with a transformer backbone, in short:
DiT = [VAE encoder + ViT + DDPM + VAE decoder].
According to the report, it seems there are not much additional bells and whistles.
- "Video compressor network": Looks like it's just a VAE but trained on raw video data. Tokenization probably plays a significant role in getting good temporal consistency. By the way, VAE is a ConvNet, so DiT technically is a hybrid model ;)
When Bill and I were working on the DiT project, instead of creating novelty (see my last tweet๐คทโโ๏ธ), we prioritized two aspects: simplicity and scalability. These priorities offer more than just conceptual advantages.
- Simplicity means flexibility. The cool thing about vanilla ViT that people often miss is how it makes your model way more flexible when it comes to working with input data. For example, in masked autoencoder (MAE), ViT helped us to just process the visible patches and ignore the masked ones. And similarly, Sora "can control the size of generated videos by arranging randomly-initialized patches in an appropriately-sized grid." UNet does not directly offer this flexibility.
๐Speculation: Sora might also use Patch nโ Pack (NaViT) from Google, to make DiT adaptable to variable resolutions/durations/aspect ratios.
- Scalability is the core theme of the DiT paper. First, an optimized DiT runs much faster than UNet in terms of wall-clock time per Flop. More importantly, Sora demonstrated that the DiT scaling law applies not just to images but now to videos as well -- Sora replicates the visual scaling behavior observed in DiT.
๐Speculation: In the Sora report, the quality for the first video is quite bad, I suspect it is using a base model size. A back-of-the-envelope calculation: DiT XL/2 is 5X GFLOPs of the B/2 model, so the final 16X compute model is probably 3X DiT-XL model size, which means Sora might have ~3B parameters โ if true, this is not an unreasonable model size . It could suggest that training the Sora model might not require as many GPUs as one would anticipate โ I would expect very fast iterations going forward.
The key takeaway is from the "Emerging simulation capabilities" section. Before Sora, it was unclear if long form consistency could emerge on its own or if it required complex subject-driven generation pipelines or even physics simulators. OpenAI has shown that, though not perfect, these behaviors can be achieved with end-to-end training. Yet, two essential points have not been discussed.
1. Training Data: No talk about training source and construction at all, which might just imply data is likely the most critical factor for Sora's success.
๐Speculations: There's already much speculation about data from game engines. I also anticipate the inclusion of movies, documentaries, cinematic long takes, etc. Quality really matters. Super curious where Sora got this data from (surely not YouTube, right?).
2. (Auto-regressive) Long Video Generation: a significant breakthrough in Sora is the ability to generate very long videos. The difference between producing a 2-second video and a 1-minute video is monumental.
In Sora, this is probably achieved through joint frame prediction that allows auto-regressive sampling, yet a major challenge is how to address error accumulation and maintain quality/consistency through time. A very long (and bi-directional) context for conditioning? Or could scaling up simply lessen the issue? These technical details can be super important and hopefully will be demystified in the future
https://x.com/gabor/status/1758295719788822866?s=46&t=h5Byg6Wosg8MJb4pbPSDow
DiT shines in Sora. Our team at NYU has recently released a new DiT model, called SiT.
X (formerly Twitter)
Gabor Cselle (@gabor) on X
.@OpenAI SORA vs @pika_labs vs @runwayml vs @StabilityAI Video.
I gave the other models SORA's starting frame. I tried my best prompting and camera motion techniques to get the other models to output something similar to SORA.
SORA's just much better atโฆ
I gave the other models SORA's starting frame. I tried my best prompting and camera motion techniques to get the other models to output something similar to SORA.
SORA's just much better atโฆ
It has exactly the same architecture, but offers enhanced performance and faster convergence. Super curious about its performance on video generation too!
https://x.com/ma_nanye/status/1748199729438113993?s=46&t=h5Byg6Wosg8MJb4pbPSDow
https://x.com/ma_nanye/status/1748199729438113993?s=46&t=h5Byg6Wosg8MJb4pbPSDow
X (formerly Twitter)
Gabor Cselle (@gabor) on X
.@OpenAI SORA vs @pika_labs vs @runwayml vs @StabilityAI Video.
I gave the other models SORA's starting frame. I tried my best prompting and camera motion techniques to get the other models to output something similar to SORA.
SORA's just much better atโฆ
I gave the other models SORA's starting frame. I tried my best prompting and camera motion techniques to get the other models to output something similar to SORA.
SORA's just much better atโฆ
์ง๋ ์์์ผ(11์ 27์ผ), ์ํ ์ค ์คํผ์ค์์ ์คํํธ์
๋ฆฌ๋๋ค๊ณผ์ ๋ชจ์์ ์ฃผ์ตํ์ต๋๋ค. ๊ณต๊ฐ์ ๋ง๋ จํด์ฃผ์ ํธ์คํ
์ค์ํ ๋๊ณผ ์ํ ์ค ๊ด๊ณ์๋ถ๋ค๊ป ๊ฐ์ฌ์ ๋ง์์ ์ ํฉ๋๋ค.
์ ํ๋ ๊ณต๊ฐ๊ณผ ์๊ฐ์ผ๋ก ์ ์ฒญํด์ฃผ์ ๋ชจ๋ ๋ถ๋ค๊ณผ ํจ๊ปํ์ง ๋ชปํ ์ ์ ์์ฌ์ ์ต๋๋ค. CTO, ๊ฐ๋ฐ ๋ฆฌ๋, CEO๋ถ๋ค๊ณผ '๋๊ธฐ๋ถ์ฌ', 'ํ์ ๋ถ์์ ์ฑ(ํนํ ์๋์ด์ ๋ถ์ฌ)', ๊ทธ๋ฆฌ๊ณ 'ํ ํ๊ณผ์ ์ํต ๋ฌธ์ '๋ผ๋ ์ฃผ์ ๋ก ์์ํ ํ ๋ก ์ ํฅ๋ฏธ์ง์งํ์ต๋๋ค. ๋ชจ๋ ๋ถ๋ค์ด ์ด์ ์ ์ผ๋ก ์ฐธ์ฌํด์ฃผ์๊ณ ๋ง์ ์ธ์ฌ์ดํธ์ ๊ณ ๋ฏผ์ ํจ๊ป ๋๋ ์ฃผ์ ์ ๋ค์ ํ๋ฒ ๋๋ฌด ๊ฐ์ฌ๋๋ฆฝ๋๋ค.
์ ๋ 2๋ ๊ฐ์ ๋ธ๋ก์ฒด์ธ ์คํ์์ค ํ๋๊ณผ ์ฝ 5๋ ๊ฐ ํด์น๋ฉ์ค์์ ๊ฒฝํ์ ๋ฐํ์ผ๋ก Engineering Manager ๊ฒฝํ์ ๊ณต์ ํ์ต๋๋ค. ๋ชจ์์์ ๊ณต์ ํ ๋ด์ฉ์ ์ ์ฒ๋ผ ํ์ ์ํด ๋ฐค๋ฎ์ผ๋ก ๊ณ ๋ฏผํ์๋ ๋ถ๋ค๊ป ์กฐ๊ธ์ด๋ผ๋ ๋์์ด ๋๊ณ ์ ์งง๊ฒ ๊ณต์ ๋๋ฆฝ๋๋ค. ๐
1. ์ ๋ Manager๋ฅผ ํ(์ฌ๋)์ ์ง์คํ์ฌ ์กฐ์ง์์ ์ํฅ๋ ฅ์ ๋ฐํํ๋ ์ฌ๋์ผ๋ก ์ ์ํ๊ณ ์์ต๋๋ค.
2. IC(๊ฐ๋ณ ๊ธฐ์ฌ์)์์ Manager๋ก ์ ํํ๋ฉด์ ์ ์ฒด์ฑ, ๊ด๊ณ, ์ํฅ๋ ฅ์ ์ ํ์ด ์ผ์ด๋ฌ์ต๋๋ค.
- ์ ์ฒด์ฑ์ ์ ํ: '์ข์ ์ ํ์ ๋ง๋๋ ๊ฐ๋ฐ์'์์ '๋ด์ฌ์ ๋๊ธฐ๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํ์๋ค์ ์ฑ ์ฅ์ ์ด์งํ๋ฉฐ, ์ง์๊ฐ๋ฅํ๊ณ ๊ฐ์น์๋ ๊ฒฐ๊ณผ๋ฅผ ๋ฌ์ฑํ๋ ํ์ ๋ง๋ค๊ณ ์ด๋์ด ๊ฐ๋ ๋ฆฌ๋๋ก ์ ํ'
- ๊ด๊ณ์ ์ ํ: ํต์ฌ ์ดํด๊ด๊ณ์๋ค์ด '์์ง๋์ด ํ์๋ค'์์ 'CEO, Head of BD, Head of TA, ์ฃผ์ ์์ง๋์ด ํ์'์ผ๋ก ์ ํ
- ์ํฅ๋ ฅ์ ์ ํ: '์ ํ ๊ฐ๋ฐ'์์ '๊ตฌ์ฑ์๋ค์ ์ฑ๊ณผ & ์ญ๋ ์ฑ์ฅ ๋ฐ ํ๊ฐ, ํผ๋๋ฐฑ, ์ฑ์ฉ, ํ์ ๋ฌธํ์ ๋ฐฉํฅ์ฑ ๊ตฌ์ถ'์ผ๋ก ์ ํ
3. Manager๋ก ํ์ ๋ฏธ์ ์ ๋ฌ์ฑํ๊ธฐ ์ํ ํ์ Being(์กด์ฌ) ์ค์ ํ์ต๋๋ค.
- ์์ฅ ๋ณํ์ ์ ์ํ๊ฒ ๋์ํ๊ณ ์ง์์ ์ผ๋ก ๋น ๋ฅด๊ฒ ๊ฐ์น๋ฅผ ์ฐฝ์ถํ๋ ์์ง๋์ด๋ง ํ
- ๋จ์ ๊ฐ๋ฐ์ ๋์ด ํตํฉ๋ ์ฑ ์๊ฐ์ ๊ฐ์ง ์์ง๋์ด๋ง ํ
4. Top Down, Bottom Up ์ ๋ต์ ํ์ฉํ์ฌ ๋ชฉํ๋ฅผ ๋ฌ์ฑํ๊ธฐ ์ํด ๋ ธ๋ ฅํ์ต๋๋ค.
Top Down ์ ๋ต (Manager๋ก ๋ฐฉํฅ์ฑ ์ ์)
- ๊ฐ๋ฐ ์์ ์ ๋จ์์ ์ฑ ์ ๋ฒ์ ์กฐ์
- ๊ธฐ๋ฅ๋ณ ๋ฐฐํฌ ์ ๋ต & E2E ์๋ํ ํ ์คํธ ๋์
- ์ญ๋ ํ๋ ์์ํฌ ์ ์
- ์์ฐ์ฑ ์งํ ๋์
Bottom Up ์ ๋ต (ํ์์๊ฒ ์ด์ ์ ๋ง์ถฐ ๋ด์ฌ์ ๋๊ธฐ๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํ ๋ฐฉํฅ์ฑ์ Align)
- 2์ฃผ ๋จ์์ 1on1(๋ฐฉํฅ์ฑ Align & ์ฑ์ฅ์ ์ด์ )
- ์ญ๋ ํ๊ฐ
5. ๋๋ถ๋ถ์ ์ด๋ ค์์ Bottom Up ์ ๋ต์ ์คํํ๋ ๋ฐ์์ ์ผ์ด๋ฌ์ต๋๋ค.
6. ์์ง ๋ง์ด ๋ถ์กฑํ๋ค๊ณ ์๊ฐํ์ง๋ง, ํ์ ์์ฐ์ฑ์ ํฌ๊ฒ ํฅ์ ์์ผฐ๊ณ , ํตํฉ๋ ์ฑ ์๊ฐ์ ๋๋ผ๋ ๋ฌธํ๊ฐ ์๋ฆฌ ์ก์์ผ๋ฉฐ, ๊ธฐ๋ํ๋ ์ญ๋์ ๋ํ ํฉ์๋ฅผ ํตํด ๊ตฌ์ฑ์๋ค์ ์ฑ์ฅ์ด ์ผ์ด๋ฌ์ต๋๋ค.
7. ์ด๋ฐ ๊ณผ์ ์์์ ์ ๊ฐ ๋ฐฐ์ด์ ์ ๋ค์๊ณผ ๊ฐ์ต๋๋ค(๋ด์ฉ์ ๋ปํ์ง๋ง ์ ํ๋๊ฒ์ ์ด๋ ต๋ค๊ณ ์๊ฐํฉ๋๋ค).
- Bottom Up ์ ๋ต์ ์ค์์ฑ ์ธ์: ์๋ฌด๋ฆฌ ๋ฐ์ด๋ ์ ๋ต์ด๋๋ผ๋ ๊ตฌ์ฑ์๋ค์ด ์ ๋๋ก ์คํํด์ฃผ์ง ์์ผ๋ฉด ์คํจํจ
- ๊ตฌ์ฑ์๋ค์ ๋ฌธ์ ์ ๋ํ ๊น์ ์ดํด: ๊ฒฝ์ฒญ๊ณผ ์ง๋ฌธ์ ํตํด ๊ตฌ์ฑ์๋ค์ ๋ฌธ์ ์ ๋ํ ๋ณธ์ง์ ์ ๊ทผ ๋ฐ ์ดํด๊ฐ ์ค์ํจ
- ๋๋ณด๋ค ์ญ๋์ด ๋ฐ์ด๋ IC์ ์ผํ๋ ๋ฒ: ๊ทธ๋ค์ด ๋ฌธ์ ์ ์ง์คํ ๋ ํ์ ๊ด์ ์์ ๋ฐฉํฅ์ฑ์ ์ ์ํ์ฌ ํ ์ฑ๊ณผ๋ฅผ ๋์ผ ์ ์์
- ๊ตฌ์ฑ์์ ๋ํ ๋ช ํํ ๊ธฐ๋์น ์ค์ : ๊ตฌ์ฑ์์ ์ฑ๊ณผ๋ ์ญ๋์ด ์์ฝ๋ค๋ฉด ๋ช ํํ๊ฒ ๊ธฐ๋ํ๋ ๋ฐ๋ฅผ ์ ๋ฌํ๋์ง๋ฅผ ๊ณ ๋ฏผํด์ผํจ
์ ํ๋ ๊ณต๊ฐ๊ณผ ์๊ฐ์ผ๋ก ์ ์ฒญํด์ฃผ์ ๋ชจ๋ ๋ถ๋ค๊ณผ ํจ๊ปํ์ง ๋ชปํ ์ ์ ์์ฌ์ ์ต๋๋ค. CTO, ๊ฐ๋ฐ ๋ฆฌ๋, CEO๋ถ๋ค๊ณผ '๋๊ธฐ๋ถ์ฌ', 'ํ์ ๋ถ์์ ์ฑ(ํนํ ์๋์ด์ ๋ถ์ฌ)', ๊ทธ๋ฆฌ๊ณ 'ํ ํ๊ณผ์ ์ํต ๋ฌธ์ '๋ผ๋ ์ฃผ์ ๋ก ์์ํ ํ ๋ก ์ ํฅ๋ฏธ์ง์งํ์ต๋๋ค. ๋ชจ๋ ๋ถ๋ค์ด ์ด์ ์ ์ผ๋ก ์ฐธ์ฌํด์ฃผ์๊ณ ๋ง์ ์ธ์ฌ์ดํธ์ ๊ณ ๋ฏผ์ ํจ๊ป ๋๋ ์ฃผ์ ์ ๋ค์ ํ๋ฒ ๋๋ฌด ๊ฐ์ฌ๋๋ฆฝ๋๋ค.
์ ๋ 2๋ ๊ฐ์ ๋ธ๋ก์ฒด์ธ ์คํ์์ค ํ๋๊ณผ ์ฝ 5๋ ๊ฐ ํด์น๋ฉ์ค์์ ๊ฒฝํ์ ๋ฐํ์ผ๋ก Engineering Manager ๊ฒฝํ์ ๊ณต์ ํ์ต๋๋ค. ๋ชจ์์์ ๊ณต์ ํ ๋ด์ฉ์ ์ ์ฒ๋ผ ํ์ ์ํด ๋ฐค๋ฎ์ผ๋ก ๊ณ ๋ฏผํ์๋ ๋ถ๋ค๊ป ์กฐ๊ธ์ด๋ผ๋ ๋์์ด ๋๊ณ ์ ์งง๊ฒ ๊ณต์ ๋๋ฆฝ๋๋ค. ๐
1. ์ ๋ Manager๋ฅผ ํ(์ฌ๋)์ ์ง์คํ์ฌ ์กฐ์ง์์ ์ํฅ๋ ฅ์ ๋ฐํํ๋ ์ฌ๋์ผ๋ก ์ ์ํ๊ณ ์์ต๋๋ค.
2. IC(๊ฐ๋ณ ๊ธฐ์ฌ์)์์ Manager๋ก ์ ํํ๋ฉด์ ์ ์ฒด์ฑ, ๊ด๊ณ, ์ํฅ๋ ฅ์ ์ ํ์ด ์ผ์ด๋ฌ์ต๋๋ค.
- ์ ์ฒด์ฑ์ ์ ํ: '์ข์ ์ ํ์ ๋ง๋๋ ๊ฐ๋ฐ์'์์ '๋ด์ฌ์ ๋๊ธฐ๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํ์๋ค์ ์ฑ ์ฅ์ ์ด์งํ๋ฉฐ, ์ง์๊ฐ๋ฅํ๊ณ ๊ฐ์น์๋ ๊ฒฐ๊ณผ๋ฅผ ๋ฌ์ฑํ๋ ํ์ ๋ง๋ค๊ณ ์ด๋์ด ๊ฐ๋ ๋ฆฌ๋๋ก ์ ํ'
- ๊ด๊ณ์ ์ ํ: ํต์ฌ ์ดํด๊ด๊ณ์๋ค์ด '์์ง๋์ด ํ์๋ค'์์ 'CEO, Head of BD, Head of TA, ์ฃผ์ ์์ง๋์ด ํ์'์ผ๋ก ์ ํ
- ์ํฅ๋ ฅ์ ์ ํ: '์ ํ ๊ฐ๋ฐ'์์ '๊ตฌ์ฑ์๋ค์ ์ฑ๊ณผ & ์ญ๋ ์ฑ์ฅ ๋ฐ ํ๊ฐ, ํผ๋๋ฐฑ, ์ฑ์ฉ, ํ์ ๋ฌธํ์ ๋ฐฉํฅ์ฑ ๊ตฌ์ถ'์ผ๋ก ์ ํ
3. Manager๋ก ํ์ ๋ฏธ์ ์ ๋ฌ์ฑํ๊ธฐ ์ํ ํ์ Being(์กด์ฌ) ์ค์ ํ์ต๋๋ค.
- ์์ฅ ๋ณํ์ ์ ์ํ๊ฒ ๋์ํ๊ณ ์ง์์ ์ผ๋ก ๋น ๋ฅด๊ฒ ๊ฐ์น๋ฅผ ์ฐฝ์ถํ๋ ์์ง๋์ด๋ง ํ
- ๋จ์ ๊ฐ๋ฐ์ ๋์ด ํตํฉ๋ ์ฑ ์๊ฐ์ ๊ฐ์ง ์์ง๋์ด๋ง ํ
4. Top Down, Bottom Up ์ ๋ต์ ํ์ฉํ์ฌ ๋ชฉํ๋ฅผ ๋ฌ์ฑํ๊ธฐ ์ํด ๋ ธ๋ ฅํ์ต๋๋ค.
Top Down ์ ๋ต (Manager๋ก ๋ฐฉํฅ์ฑ ์ ์)
- ๊ฐ๋ฐ ์์ ์ ๋จ์์ ์ฑ ์ ๋ฒ์ ์กฐ์
- ๊ธฐ๋ฅ๋ณ ๋ฐฐํฌ ์ ๋ต & E2E ์๋ํ ํ ์คํธ ๋์
- ์ญ๋ ํ๋ ์์ํฌ ์ ์
- ์์ฐ์ฑ ์งํ ๋์
Bottom Up ์ ๋ต (ํ์์๊ฒ ์ด์ ์ ๋ง์ถฐ ๋ด์ฌ์ ๋๊ธฐ๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํ ๋ฐฉํฅ์ฑ์ Align)
- 2์ฃผ ๋จ์์ 1on1(๋ฐฉํฅ์ฑ Align & ์ฑ์ฅ์ ์ด์ )
- ์ญ๋ ํ๊ฐ
5. ๋๋ถ๋ถ์ ์ด๋ ค์์ Bottom Up ์ ๋ต์ ์คํํ๋ ๋ฐ์์ ์ผ์ด๋ฌ์ต๋๋ค.
6. ์์ง ๋ง์ด ๋ถ์กฑํ๋ค๊ณ ์๊ฐํ์ง๋ง, ํ์ ์์ฐ์ฑ์ ํฌ๊ฒ ํฅ์ ์์ผฐ๊ณ , ํตํฉ๋ ์ฑ ์๊ฐ์ ๋๋ผ๋ ๋ฌธํ๊ฐ ์๋ฆฌ ์ก์์ผ๋ฉฐ, ๊ธฐ๋ํ๋ ์ญ๋์ ๋ํ ํฉ์๋ฅผ ํตํด ๊ตฌ์ฑ์๋ค์ ์ฑ์ฅ์ด ์ผ์ด๋ฌ์ต๋๋ค.
7. ์ด๋ฐ ๊ณผ์ ์์์ ์ ๊ฐ ๋ฐฐ์ด์ ์ ๋ค์๊ณผ ๊ฐ์ต๋๋ค(๋ด์ฉ์ ๋ปํ์ง๋ง ์ ํ๋๊ฒ์ ์ด๋ ต๋ค๊ณ ์๊ฐํฉ๋๋ค).
- Bottom Up ์ ๋ต์ ์ค์์ฑ ์ธ์: ์๋ฌด๋ฆฌ ๋ฐ์ด๋ ์ ๋ต์ด๋๋ผ๋ ๊ตฌ์ฑ์๋ค์ด ์ ๋๋ก ์คํํด์ฃผ์ง ์์ผ๋ฉด ์คํจํจ
- ๊ตฌ์ฑ์๋ค์ ๋ฌธ์ ์ ๋ํ ๊น์ ์ดํด: ๊ฒฝ์ฒญ๊ณผ ์ง๋ฌธ์ ํตํด ๊ตฌ์ฑ์๋ค์ ๋ฌธ์ ์ ๋ํ ๋ณธ์ง์ ์ ๊ทผ ๋ฐ ์ดํด๊ฐ ์ค์ํจ
- ๋๋ณด๋ค ์ญ๋์ด ๋ฐ์ด๋ IC์ ์ผํ๋ ๋ฒ: ๊ทธ๋ค์ด ๋ฌธ์ ์ ์ง์คํ ๋ ํ์ ๊ด์ ์์ ๋ฐฉํฅ์ฑ์ ์ ์ํ์ฌ ํ ์ฑ๊ณผ๋ฅผ ๋์ผ ์ ์์
- ๊ตฌ์ฑ์์ ๋ํ ๋ช ํํ ๊ธฐ๋์น ์ค์ : ๊ตฌ์ฑ์์ ์ฑ๊ณผ๋ ์ญ๋์ด ์์ฝ๋ค๋ฉด ๋ช ํํ๊ฒ ๊ธฐ๋ํ๋ ๋ฐ๋ฅผ ์ ๋ฌํ๋์ง๋ฅผ ๊ณ ๋ฏผํด์ผํจ
๐1
์์ฌ๋๊ณผ์ ๋ํ ์ค ๊ธฐ์ต์ ๋จ๋ ๊ตฌ์ ๋ค.
๊ฒฐ๊ตญ ์ฐฝ์ ์์ ๊ฐ์น๊ด, ์ธ๊ณ๊ด์ด ๊ทธ ์กฐ์ง์ DNA์ด๊ณ ์ผํ๋ ๋ฐฉ์์ด๋ค.
์ฐฝ์ ์์ ๋๋ค์์ด ์กฐ์ง์ ๋๋ค์์ ๋ง๋ ๋ค.
์ข์ํ์ง๋ง, ๊ณ ๊ฐ์ ๋ง์กฑ์ํฌ๋งํผ ์ง๋ ํ๊ฒ ์ข์ํ๋ ์ผ์ ์ฐฝ์ ํด์ผํ๋ค.
์งง๊ณ ๋น ๋ฅธ ์ฑ๊ณต์ด ์๋๋ผ ๋๋ค์ด ์ฌ์ ์ ๊ฐ๋ ๊ฒ์ด ์ค์ํ๋ค.
๋๋ฌด ์งง์ ์๊ฐ์ ๋ง์ ๊ฒ์ ์ด๋ค๋ค๊ณ ์ฐฉ๊ฐํ๋ฉด ๋๊ณ ๊ณ ์ธ๋ค.
์ฃผ๋ณ์ ๋ณด๊ณ ๋ฐฐ์ฐ๋ฉด ์ฑ์ฅํ ์ ์๊ณ , ๋น๊ตํ๋ฉด ๋ถํํด์ง๋ค.
๋๋์ง ์๋๋์ง๋ ํด๋ณด๊ธฐ ์ ๊น์ง ๋ชจ๋ฅธ๋ค. ๊ฐ๋ฅํ ๋ง์ ๊ฒ๋ค์ ํด๋ณด๊ณ ๋๋ฉด ๊ทธ ์ผ์ด ์ ์๋๋๋ผ๋ ์๋ก์ด ์ธ์๊ณผ ๊ธฐํ๊ฐ ๋ณด์ธ๋ค.
๋ ๋ง์ด ๋ฒ์ด์ ๋จ ์ข์ ์ผ ๋ง์ด ํ์.
ํน์ ๋ชฉ์ ์ ์ฑ์ทจํ๋ ์ถ์ด ์๋๋ผ ๊พธ์คํ ๋ฐฐ์ฐ๊ณ ์ฑ์ฅํ๊ณ ๊ฐ์ฌํ๋ ๊ณผ์ ์ด ์ข๋ค.
๊ฒฐ๊ตญ ์ฐฝ์ ์์ ๊ฐ์น๊ด, ์ธ๊ณ๊ด์ด ๊ทธ ์กฐ์ง์ DNA์ด๊ณ ์ผํ๋ ๋ฐฉ์์ด๋ค.
์ฐฝ์ ์์ ๋๋ค์์ด ์กฐ์ง์ ๋๋ค์์ ๋ง๋ ๋ค.
์ข์ํ์ง๋ง, ๊ณ ๊ฐ์ ๋ง์กฑ์ํฌ๋งํผ ์ง๋ ํ๊ฒ ์ข์ํ๋ ์ผ์ ์ฐฝ์ ํด์ผํ๋ค.
์งง๊ณ ๋น ๋ฅธ ์ฑ๊ณต์ด ์๋๋ผ ๋๋ค์ด ์ฌ์ ์ ๊ฐ๋ ๊ฒ์ด ์ค์ํ๋ค.
๋๋ฌด ์งง์ ์๊ฐ์ ๋ง์ ๊ฒ์ ์ด๋ค๋ค๊ณ ์ฐฉ๊ฐํ๋ฉด ๋๊ณ ๊ณ ์ธ๋ค.
์ฃผ๋ณ์ ๋ณด๊ณ ๋ฐฐ์ฐ๋ฉด ์ฑ์ฅํ ์ ์๊ณ , ๋น๊ตํ๋ฉด ๋ถํํด์ง๋ค.
๋๋์ง ์๋๋์ง๋ ํด๋ณด๊ธฐ ์ ๊น์ง ๋ชจ๋ฅธ๋ค. ๊ฐ๋ฅํ ๋ง์ ๊ฒ๋ค์ ํด๋ณด๊ณ ๋๋ฉด ๊ทธ ์ผ์ด ์ ์๋๋๋ผ๋ ์๋ก์ด ์ธ์๊ณผ ๊ธฐํ๊ฐ ๋ณด์ธ๋ค.
๋ ๋ง์ด ๋ฒ์ด์ ๋จ ์ข์ ์ผ ๋ง์ด ํ์.
ํน์ ๋ชฉ์ ์ ์ฑ์ทจํ๋ ์ถ์ด ์๋๋ผ ๊พธ์คํ ๋ฐฐ์ฐ๊ณ ์ฑ์ฅํ๊ณ ๊ฐ์ฌํ๋ ๊ณผ์ ์ด ์ข๋ค.
โค2
Many people learn about the tools just enough to get the job done. I prefer to dive deeper; understanding my tools in detail makes my work much more fun.
Not sure if it's good or bad. Just more fun! Perhaps thatโs what truly matters in the end.
Not sure if it's good or bad. Just more fun! Perhaps thatโs what truly matters in the end.
๐ฅ2
A rock pile ceases to be a rock pile the moment a single man contemplates it, bearing within him the image of a cathedral.
ํ ์ฌ๋์ด๋ผ๋ ํฐ ์ฑ๋น์ ์ด๋ฏธ์ง๋ฅผ ํ๊ณ ๋๋ฌด๋๊ธฐ๋ฅผ ๋ณธ๋ค๋ฉด, ๊ทธ ์๊ฐ ๋ ์ด์ ๊ทธ๊ฒ์ ๋๋ฌด๋๊ธฐ๊ฐ ์๋๋ค.
ํ ์ฌ๋์ด๋ผ๋ ํฐ ์ฑ๋น์ ์ด๋ฏธ์ง๋ฅผ ํ๊ณ ๋๋ฌด๋๊ธฐ๋ฅผ ๋ณธ๋ค๋ฉด, ๊ทธ ์๊ฐ ๋ ์ด์ ๊ทธ๊ฒ์ ๋๋ฌด๋๊ธฐ๊ฐ ์๋๋ค.
๐กWinning Instincts vs. Winning Ideas: Your instinct is correct 95% of the time; your ideas - 25% of the time. Trust your instincts, not your ideas.
๐ช Small Ideas - Big Ambitions: Start small with big ambitions.
๐งฉ Proven, Better, New: Each product is an aggregation of individual features where some features are โprovenโ, other features are โbetterโ than the existing ones, and there are โnewโ features that did not exist before. It is about making the product, as a whole, better. Otherwise (reciting Steve Jobs), by trying to make every feature 10% better, you may make the product 50% worse.
๐ All New Fails: Assume new fails, and you can find a way to work around it.
๐ก Death By a Thousand Compromises: If you make too many compromises as a founder, you may end up building a company you donโt want to work at. Build a house you want to live in. Decide how ambitious you really are. No judgment, just intellectual honesty. Identify things that matter to you, lines you would not cross, trade-offs you would be willing to make. โIโm a team player; if Iโm running the team, I have to be CEOโ
๐ Taste & creativity: You have to constantly increase your bar, develop your taste, make it better. Care at a pixel level. Keep an eye out for true signals.
โ๏ธ Lessons Learned: Canโt be naรฏve to a new space; have to learn on the go. Proven, better, new โ copy what works well. Allow yourself to be too early โ it may be hard but it has to be done to discover a new planet. Understand what your ego is and how to avoid pitfalls that come with it.
โจ Happiness: Being and feeling useful to a community you care about.
Mark Pincus Founder and CEO of Zynga
๐ช Small Ideas - Big Ambitions: Start small with big ambitions.
๐งฉ Proven, Better, New: Each product is an aggregation of individual features where some features are โprovenโ, other features are โbetterโ than the existing ones, and there are โnewโ features that did not exist before. It is about making the product, as a whole, better. Otherwise (reciting Steve Jobs), by trying to make every feature 10% better, you may make the product 50% worse.
๐ All New Fails: Assume new fails, and you can find a way to work around it.
๐ก Death By a Thousand Compromises: If you make too many compromises as a founder, you may end up building a company you donโt want to work at. Build a house you want to live in. Decide how ambitious you really are. No judgment, just intellectual honesty. Identify things that matter to you, lines you would not cross, trade-offs you would be willing to make. โIโm a team player; if Iโm running the team, I have to be CEOโ
๐ Taste & creativity: You have to constantly increase your bar, develop your taste, make it better. Care at a pixel level. Keep an eye out for true signals.
โ๏ธ Lessons Learned: Canโt be naรฏve to a new space; have to learn on the go. Proven, better, new โ copy what works well. Allow yourself to be too early โ it may be hard but it has to be done to discover a new planet. Understand what your ego is and how to avoid pitfalls that come with it.
โจ Happiness: Being and feeling useful to a community you care about.
Mark Pincus Founder and CEO of Zynga
https://www.klarna.com/international/press/klarna-ai-assistant-handles-two-thirds-of-customer-service-chats-in-its-first-month/
โข The AI assistant has had 2.3 million conversations, two-thirds of Klarnaโs customer service chats
โข It is doing the equivalent work of 700 full-time agents
โข It is on par with human agents in regard to customer satisfaction score
โข It is more accurate in errand resolution, leading to a 25% drop in repeat inquiries
โข Customers now resolve their errands in less than 2 mins compared to 11 mins previously
โข Itโs available in 23 markets, 24/7 and communicates in more than 35 languages
โข Itโs estimated to drive a $40 million USD in profit improvement to Klarna in 2024
โข The AI assistant has had 2.3 million conversations, two-thirds of Klarnaโs customer service chats
โข It is doing the equivalent work of 700 full-time agents
โข It is on par with human agents in regard to customer satisfaction score
โข It is more accurate in errand resolution, leading to a 25% drop in repeat inquiries
โข Customers now resolve their errands in less than 2 mins compared to 11 mins previously
โข Itโs available in 23 markets, 24/7 and communicates in more than 35 languages
โข Itโs estimated to drive a $40 million USD in profit improvement to Klarna in 2024
Klarna
Klarna AI assistant handles two-thirds of customer service chats in its first month | Klarna International