FS
Master the Art of Learning:
"Clear writing gives poor thinking nowhere to hide."
β Source
Insight
A reminder from your future self:
βIf I knew I was going to live this long, I'd have taken better care of myself.β
β Mickey Mantle
Tiny Thought
Common causes of bad decisions:
1. Assumptions based on small sample sizes
2. Wanting the world to work the way we want rather than the way it does
3. Conforming to expectations/authority/group (social default)
4. Blindness to large trends (blind spots)
5. Not asking, "and then what?"
(Click here to share on Twitter)
Master the Art of Learning:
"Clear writing gives poor thinking nowhere to hide."
β Source
Insight
A reminder from your future self:
βIf I knew I was going to live this long, I'd have taken better care of myself.β
β Mickey Mantle
Tiny Thought
Common causes of bad decisions:
1. Assumptions based on small sample sizes
2. Wanting the world to work the way we want rather than the way it does
3. Conforming to expectations/authority/group (social default)
4. Blindness to large trends (blind spots)
5. Not asking, "and then what?"
(Click here to share on Twitter)
Forwarded from μ²νλ‘μ μ½ν
μΈ λͺ¨μλ°©
[nVIDIA CEO μ μ¨ ν© μ‘Έμ
μ μ°μ€]
λ΄μ©μ΄ μ’μμ κ°μ Έμλ΄€μ΅λλ€
μλ¬Έ: https://twitter.com/danqing_liu/status/1662657519888617476
μλΉλμμ 창립μμΈ μ μ¨ ν©μ΄ μ΅κ·Όμ λλ§μμ μ‘Έμ μ μ°μ€μ νμ΅λλ€.
μ€ν°λΈ μ‘μ€κ° 2005λ μ νλ κ²μ²λΌ, κ·Έλ μλΉλμλ₯Ό νμ¬μ μμΉμ μ΄λ₯΄κ² ν 3κ°μ§ κ²°μ μ μΈ μ΄μΌκΈ° β κ²Έμ, μΈλ΄, κ·Έλ¦¬κ³ μ§μ€μ λν μ΄μΌκΈ°λ₯Ό 곡μ νμ΅λλ€. κ·Έκ²λ€μ λ€μκ³Ό κ°μ΅λλ€.
κ²Έμ
μλΉλμμ 첫 μμ© νλ‘κ·Έλ¨μ 3D κ·Έλν½μ΄μμ΅λλ€. κ·Έλ€μ forward texture mappingμ΄λΌλ κΈ°μ μ κ°λ°νκ³ μΌλ³Έ κ²μ νμ¬μΈ μΈκ°μ κ³μ½μ λ§Ίμμ΅λλ€.
κ·Έλ¬λ κ°λ°μ ν ν΄λμ μ§νν ν, μλΉλμλ μ΄ κΈ°μ μ΄ μλͺ»λμκ³ , κΈ°μ μ μΌλ‘ λ―Έν‘ν μ λ΅μμ κΉ¨λ¬μμ΅λλ€. κ²λ€κ° μ΄λ λ€λ₯Έ μν€ν μ²λ₯Ό μ¬μ©ν μμ μΈ Windows 95μ νΈνλμ§ μμ κ²μ΄λΌλ μ μ΄μμ΅λλ€.
κ³μ½μ μλ£νλ©΄ κ·Έλ€μ λ°λΌμ‘μ μκ°μ΄ μμ΄μ μ¬μ μ κ·Έλ§λ μλ μμ΅λλ€. νμ§λ§ κ·Έ λΉμμλ μΈκ°λ‘λΆν° λμ λ°μμΌ μ¬μ μ κ³μν μ μμμ΅λλ€. κ·Έλμ μ μ¨μ μΈκ°μκ² μ νλ₯Ό κ±Έμ΄, κ³μ½μ μν λ€λ₯Έ ννΈλλ₯Ό μ°Ύλλ‘ μμ²νλ©΄μλ κ·Έλ€μ΄ μλΉλμμκ² λμ κ³μ μ§λΆν΄μ€ κ²μ κ²Έμνκ² μμ²νμ΅λλ€.
μ΄κ²μ μ°½νΌμ€λ¬μ΄ μΌμ΄μμ΅λλ€. νμ§λ§ λλκ²λ, μΈκ°λ λμνμ΅λλ€. κ·Έκ²μ μλΉλμμκ² 6κ°μ λμμ μ¬μ λ₯Ό μ€¬κ³ , κ·Έ κΈ°κ° λμ κ·Έλ€μ μλ‘μ΄ μΉ©μ κ°λ°νμ¬ ννΈλ₯Ό μ³€μ΅λλ€. μ€λ₯λ₯Ό μΈμ νκ³ , λμμ μ²νλ ννμ κ²Έμμ νΉν μ¬λ₯μκ³ μ±κ³΅μ μ΄λ©° μΌλ§μ μΈ μ¬λλ€μκ² νλ μΌμ λλ€.
νμ§λ§ λͺ¨λ μ¬λμ΄ μ΄λ μμ μμλ ν리거λ λμμ νμλ‘ ν κ²μ΄λ©°, κ²Έμν μ¬λλ€μ΄ λ°λ‘ μμ‘΄ν μ¬λλ€μ΄ λ κ²μ λλ€.
μΈλ΄
2007λ , μλΉλμλ κ³Όν μ»΄ν¨ν μ μν νλ‘κ·Έλλ° λͺ¨λΈμΈ CUDAλ₯Ό λ°ννμ΅λλ€.
μ€λλ , CUDAλ AIμ κ·Όκ°μ λλ€.
κ·Έλ¬λ λΉμμλ μλ‘μ΄ λͺ¨λΈμ κ°λ°νλ κ²μ΄ λ¬΄μ² μ΄λ €μ μ΅λλ€. CPU μ»΄ν¨ν λͺ¨λΈμ΄ μ΄λ―Έ 60λ λμ νμ€μ΄μμ΅λλ€. μλΉλμλ CUDAλ₯Ό κ°λ°νκ³ ν보νλ λ° μ΅μ μ λ€νμ΅λλ€.
κ·Έλ€μ μΆ©λΆν ν° μ€μΉ κΈ°λ°μ ν보νκΈ° μν΄ μΈκΈ° μλ GeForce κ²μ GPUμ CUDA μ§μμ μΆκ°νμκ³ , GTCλ₯Ό κ°μ΅νκ³ κ°λ°μλ€κ³Ό νλ ₯νμ¬ CUDAμμ μ€νλλ μμ© νλ‘κ·Έλ¨μ΄ λ§λ€μ΄μ§λλ‘ νμ΅λλ€. κ·Έλ¬λ CUDAμ μ§μ€νλ©΄ λ€λ₯Έ μ νμ΄ μ€μ΄λ€μ΄ νμ¬μ λ§€μΆμ΄ μ 체λμκ³ , CUDAκ° λ°λͺ λ μ§ 5λ λ§μ μλΉλμμ μ£Όκ°λ κ±°μ 50% λ¨μ΄μ‘μ΅λλ€.
μ£Όμ£Όλ€μ νμ¬μ μμ΅μ±μ ν₯μμν€λΌκ³ μꡬνμ§λ§, μ μ¨κ³Ό νμ μΈλ΄νμ΅λλ€. μ΄κ²μ 무μ²μ΄λ κΈ΄ κ²μμ΄μμ΅λλ€.
15λ νμΈ μ€λ, λͺ¨λ μ¬λλ€μ΄ CUDAκ° μλΉλμμ κ°μ₯ ν° μμ°μ΄λ©° νμ¬ AI λΆμ΄ μΌμ΄λλ μ΄μ λΌκ³ λ§ν κ²μ λλ€.
νμ§λ§ μΈλ΄μ μΈλ΄μ¬μ΄ μμλ€λ©΄ κ²°κ³Όλ μμ ν λ¬λμ μ μμ΅λλ€.
μ§μ€
2010λ λμλ ꡬκΈμ΄ μλλ‘μ΄λλ₯Ό κ°λ ₯ν λͺ¨λ°μΌ μ»΄ν¨ν°λ‘ λ§λ€κΈ°λ₯Ό μνμκ³ , μλΉλμμ ν¨κ» μΉ©μ κ°λ°νκ² λμμ΅λλ€.
μ΄κ²μ μλΉλμμκ² μ¦κ°μ μΈ μ±κ³΅μ κ°μ Έλ€μ£Όμκ³ μ£Όκ°κ° κΈλ±νμμ΅λλ€. κ·Έλ¬λ κ³§ κ²½μμ΄ λΆμ΄λ¬λλ°, λͺ¨λ μ μ‘°μ¬λ€μ΄ μ»΄ν¨ν μΉ©μ λ§λλ λ²μ λ°°μ°κ³ μλΉλμλ λͺ¨λμ λ§λλ λ²μ λ°°μ°κ² λμμ΅λλ€.
ν΄λν° μμ₯μ μμ²λκ² ν¬λ€. νμ§λ§ κΆκ·Ήμ μΌλ‘, μλΉλμλ μμ₯ μ μ μ¨μ λμ΄κΈ° μν΄ μΈμ°λ λμ μμ₯μμ λ¬Όλ¬λκΈ°λ‘ κ²°μ νμ΅λλ€.
κ·Έλ€μ κ·Έλ€λ§μ νλ«νΌμ μ§μ€νκΈ° μν΄μμμ΅λλ€. μλΉλμμ λΉμ μ μΌλ° μ»΄ν¨ν°λ‘λ ν΄κ²°ν μ μλ λ¬Έμ λ₯Ό ν΄κ²°ν μ μλ μ»΄ν¨ν°λ₯Ό λ§λλ κ²μ΄μμ΅λλ€ β μ΄κ²μ΄ CUDAλ₯Ό μΆμν μ΄μ μμ΅λλ€.
κ·Έλ¦¬κ³ μ μ¨μ λͺ¨λ°μΌ μΉ© μ¬μ μ ν¬κΈ°νκ³ μλΉλμλ₯Ό μ΄ λΉμ μ μ€νμν€λ λ° νμ νκΈ°λ‘ κ²°μ νμ΅λλ€. μμ‘° λ¬λ¬μ ν΄λν° μμ₯μ λΉνλ©΄, μ΄ "AI μ»΄ν¨ν " μμ₯μ κ·Έ λΉμμλ μ€μ§μ μΌλ‘ μ‘΄μ¬νμ§ μμμ΅λλ€.
κ·Έλ¬λ μ΄ μ§μ€λ ₯κ³Ό νμ μ΄ κ²°κ΅ λ³΄λλΉμ λ΄€μ΅λλ€. μ€λλ , μλΉλμλ μκ°μ΄μ‘μ΄ 1μ‘° λ¬λ¬μ κ·Όμ νλ©° μΈκ³μμ 6λ²μ§Έλ‘ κ°μΉ μλ νμ¬μ λλ€. μ€μλ₯Ό μΈμ νλ κ²μ΄ μ΄λ ΅λ€λ©΄, μ±κ³΅ν κ²μ ν¬κΈ°νλ κ²μ λμ± μ΄λ ΅μ΅λλ€.
νμ΄μ€λΆμ "λΉ λ₯΄κ² μμ§μ΄κ³ 물건μ κΉ¨λΌ"λ λͺ¨ν λ λΉμ μ΄ ν¬μν΄μΌ ν κ²μ μλ €μ£ΌκΈ° λλ¬Έμ νλ₯ν©λλ€.
μ΄ μλΉλμμ μ΄μΌκΈ°λ λΉμ·ν©λλ€. ν¬κΈ°νλ κ²μ΄ λΉμ μ μ§μ ν μ§μ€μ΄ 무μμΈμ§λ₯Ό 보μ¬μ€λλ€. 보λμ€λ‘, μ μ¨μ΄ μ‘Έμ μλ€μκ² ν μ‘°μΈμ 'κ±·μ§ λ§κ³ λ¬λ €λΌ'μμ΅λλ€.
λΉμ μ λ¨Ήμ΄λ₯Ό μν΄ λ¬λ¦¬κ±°λ, λ¨Ήμ΄κ° λμ§ μκΈ° μν΄ λ¬λ¦΄ μ μμ΅λλ€. νμ§λ§ μ΄μ¨λ λΉμ μ λ¬λ €μΌ ν©λλ€.
λ΄μ©μ΄ μ’μμ κ°μ Έμλ΄€μ΅λλ€
μλ¬Έ: https://twitter.com/danqing_liu/status/1662657519888617476
μλΉλμμ 창립μμΈ μ μ¨ ν©μ΄ μ΅κ·Όμ λλ§μμ μ‘Έμ μ μ°μ€μ νμ΅λλ€.
μ€ν°λΈ μ‘μ€κ° 2005λ μ νλ κ²μ²λΌ, κ·Έλ μλΉλμλ₯Ό νμ¬μ μμΉμ μ΄λ₯΄κ² ν 3κ°μ§ κ²°μ μ μΈ μ΄μΌκΈ° β κ²Έμ, μΈλ΄, κ·Έλ¦¬κ³ μ§μ€μ λν μ΄μΌκΈ°λ₯Ό 곡μ νμ΅λλ€. κ·Έκ²λ€μ λ€μκ³Ό κ°μ΅λλ€.
κ²Έμ
μλΉλμμ 첫 μμ© νλ‘κ·Έλ¨μ 3D κ·Έλν½μ΄μμ΅λλ€. κ·Έλ€μ forward texture mappingμ΄λΌλ κΈ°μ μ κ°λ°νκ³ μΌλ³Έ κ²μ νμ¬μΈ μΈκ°μ κ³μ½μ λ§Ίμμ΅λλ€.
κ·Έλ¬λ κ°λ°μ ν ν΄λμ μ§νν ν, μλΉλμλ μ΄ κΈ°μ μ΄ μλͺ»λμκ³ , κΈ°μ μ μΌλ‘ λ―Έν‘ν μ λ΅μμ κΉ¨λ¬μμ΅λλ€. κ²λ€κ° μ΄λ λ€λ₯Έ μν€ν μ²λ₯Ό μ¬μ©ν μμ μΈ Windows 95μ νΈνλμ§ μμ κ²μ΄λΌλ μ μ΄μμ΅λλ€.
κ³μ½μ μλ£νλ©΄ κ·Έλ€μ λ°λΌμ‘μ μκ°μ΄ μμ΄μ μ¬μ μ κ·Έλ§λ μλ μμ΅λλ€. νμ§λ§ κ·Έ λΉμμλ μΈκ°λ‘λΆν° λμ λ°μμΌ μ¬μ μ κ³μν μ μμμ΅λλ€. κ·Έλμ μ μ¨μ μΈκ°μκ² μ νλ₯Ό κ±Έμ΄, κ³μ½μ μν λ€λ₯Έ ννΈλλ₯Ό μ°Ύλλ‘ μμ²νλ©΄μλ κ·Έλ€μ΄ μλΉλμμκ² λμ κ³μ μ§λΆν΄μ€ κ²μ κ²Έμνκ² μμ²νμ΅λλ€.
μ΄κ²μ μ°½νΌμ€λ¬μ΄ μΌμ΄μμ΅λλ€. νμ§λ§ λλκ²λ, μΈκ°λ λμνμ΅λλ€. κ·Έκ²μ μλΉλμμκ² 6κ°μ λμμ μ¬μ λ₯Ό μ€¬κ³ , κ·Έ κΈ°κ° λμ κ·Έλ€μ μλ‘μ΄ μΉ©μ κ°λ°νμ¬ ννΈλ₯Ό μ³€μ΅λλ€. μ€λ₯λ₯Ό μΈμ νκ³ , λμμ μ²νλ ννμ κ²Έμμ νΉν μ¬λ₯μκ³ μ±κ³΅μ μ΄λ©° μΌλ§μ μΈ μ¬λλ€μκ² νλ μΌμ λλ€.
νμ§λ§ λͺ¨λ μ¬λμ΄ μ΄λ μμ μμλ ν리거λ λμμ νμλ‘ ν κ²μ΄λ©°, κ²Έμν μ¬λλ€μ΄ λ°λ‘ μμ‘΄ν μ¬λλ€μ΄ λ κ²μ λλ€.
μΈλ΄
2007λ , μλΉλμλ κ³Όν μ»΄ν¨ν μ μν νλ‘κ·Έλλ° λͺ¨λΈμΈ CUDAλ₯Ό λ°ννμ΅λλ€.
μ€λλ , CUDAλ AIμ κ·Όκ°μ λλ€.
κ·Έλ¬λ λΉμμλ μλ‘μ΄ λͺ¨λΈμ κ°λ°νλ κ²μ΄ λ¬΄μ² μ΄λ €μ μ΅λλ€. CPU μ»΄ν¨ν λͺ¨λΈμ΄ μ΄λ―Έ 60λ λμ νμ€μ΄μμ΅λλ€. μλΉλμλ CUDAλ₯Ό κ°λ°νκ³ ν보νλ λ° μ΅μ μ λ€νμ΅λλ€.
κ·Έλ€μ μΆ©λΆν ν° μ€μΉ κΈ°λ°μ ν보νκΈ° μν΄ μΈκΈ° μλ GeForce κ²μ GPUμ CUDA μ§μμ μΆκ°νμκ³ , GTCλ₯Ό κ°μ΅νκ³ κ°λ°μλ€κ³Ό νλ ₯νμ¬ CUDAμμ μ€νλλ μμ© νλ‘κ·Έλ¨μ΄ λ§λ€μ΄μ§λλ‘ νμ΅λλ€. κ·Έλ¬λ CUDAμ μ§μ€νλ©΄ λ€λ₯Έ μ νμ΄ μ€μ΄λ€μ΄ νμ¬μ λ§€μΆμ΄ μ 체λμκ³ , CUDAκ° λ°λͺ λ μ§ 5λ λ§μ μλΉλμμ μ£Όκ°λ κ±°μ 50% λ¨μ΄μ‘μ΅λλ€.
μ£Όμ£Όλ€μ νμ¬μ μμ΅μ±μ ν₯μμν€λΌκ³ μꡬνμ§λ§, μ μ¨κ³Ό νμ μΈλ΄νμ΅λλ€. μ΄κ²μ 무μ²μ΄λ κΈ΄ κ²μμ΄μμ΅λλ€.
15λ νμΈ μ€λ, λͺ¨λ μ¬λλ€μ΄ CUDAκ° μλΉλμμ κ°μ₯ ν° μμ°μ΄λ©° νμ¬ AI λΆμ΄ μΌμ΄λλ μ΄μ λΌκ³ λ§ν κ²μ λλ€.
νμ§λ§ μΈλ΄μ μΈλ΄μ¬μ΄ μμλ€λ©΄ κ²°κ³Όλ μμ ν λ¬λμ μ μμ΅λλ€.
μ§μ€
2010λ λμλ ꡬκΈμ΄ μλλ‘μ΄λλ₯Ό κ°λ ₯ν λͺ¨λ°μΌ μ»΄ν¨ν°λ‘ λ§λ€κΈ°λ₯Ό μνμκ³ , μλΉλμμ ν¨κ» μΉ©μ κ°λ°νκ² λμμ΅λλ€.
μ΄κ²μ μλΉλμμκ² μ¦κ°μ μΈ μ±κ³΅μ κ°μ Έλ€μ£Όμκ³ μ£Όκ°κ° κΈλ±νμμ΅λλ€. κ·Έλ¬λ κ³§ κ²½μμ΄ λΆμ΄λ¬λλ°, λͺ¨λ μ μ‘°μ¬λ€μ΄ μ»΄ν¨ν μΉ©μ λ§λλ λ²μ λ°°μ°κ³ μλΉλμλ λͺ¨λμ λ§λλ λ²μ λ°°μ°κ² λμμ΅λλ€.
ν΄λν° μμ₯μ μμ²λκ² ν¬λ€. νμ§λ§ κΆκ·Ήμ μΌλ‘, μλΉλμλ μμ₯ μ μ μ¨μ λμ΄κΈ° μν΄ μΈμ°λ λμ μμ₯μμ λ¬Όλ¬λκΈ°λ‘ κ²°μ νμ΅λλ€.
κ·Έλ€μ κ·Έλ€λ§μ νλ«νΌμ μ§μ€νκΈ° μν΄μμμ΅λλ€. μλΉλμμ λΉμ μ μΌλ° μ»΄ν¨ν°λ‘λ ν΄κ²°ν μ μλ λ¬Έμ λ₯Ό ν΄κ²°ν μ μλ μ»΄ν¨ν°λ₯Ό λ§λλ κ²μ΄μμ΅λλ€ β μ΄κ²μ΄ CUDAλ₯Ό μΆμν μ΄μ μμ΅λλ€.
κ·Έλ¦¬κ³ μ μ¨μ λͺ¨λ°μΌ μΉ© μ¬μ μ ν¬κΈ°νκ³ μλΉλμλ₯Ό μ΄ λΉμ μ μ€νμν€λ λ° νμ νκΈ°λ‘ κ²°μ νμ΅λλ€. μμ‘° λ¬λ¬μ ν΄λν° μμ₯μ λΉνλ©΄, μ΄ "AI μ»΄ν¨ν " μμ₯μ κ·Έ λΉμμλ μ€μ§μ μΌλ‘ μ‘΄μ¬νμ§ μμμ΅λλ€.
κ·Έλ¬λ μ΄ μ§μ€λ ₯κ³Ό νμ μ΄ κ²°κ΅ λ³΄λλΉμ λ΄€μ΅λλ€. μ€λλ , μλΉλμλ μκ°μ΄μ‘μ΄ 1μ‘° λ¬λ¬μ κ·Όμ νλ©° μΈκ³μμ 6λ²μ§Έλ‘ κ°μΉ μλ νμ¬μ λλ€. μ€μλ₯Ό μΈμ νλ κ²μ΄ μ΄λ ΅λ€λ©΄, μ±κ³΅ν κ²μ ν¬κΈ°νλ κ²μ λμ± μ΄λ ΅μ΅λλ€.
νμ΄μ€λΆμ "λΉ λ₯΄κ² μμ§μ΄κ³ 물건μ κΉ¨λΌ"λ λͺ¨ν λ λΉμ μ΄ ν¬μν΄μΌ ν κ²μ μλ €μ£ΌκΈ° λλ¬Έμ νλ₯ν©λλ€.
μ΄ μλΉλμμ μ΄μΌκΈ°λ λΉμ·ν©λλ€. ν¬κΈ°νλ κ²μ΄ λΉμ μ μ§μ ν μ§μ€μ΄ 무μμΈμ§λ₯Ό 보μ¬μ€λλ€. 보λμ€λ‘, μ μ¨μ΄ μ‘Έμ μλ€μκ² ν μ‘°μΈμ 'κ±·μ§ λ§κ³ λ¬λ €λΌ'μμ΅λλ€.
λΉμ μ λ¨Ήμ΄λ₯Ό μν΄ λ¬λ¦¬κ±°λ, λ¨Ήμ΄κ° λμ§ μκΈ° μν΄ λ¬λ¦΄ μ μμ΅λλ€. νμ§λ§ μ΄μ¨λ λΉμ μ λ¬λ €μΌ ν©λλ€.
Twitter
Jensen Huang, the founder of Nvidia, just gave a commencement speech in Taiwan.
Like Steve Jobs in 2005, he shared 3 stories β 3 pivotal decisions that led Nvidia to where it is today.
The stories are about humility, perseverance, and focus. Here theyβ¦
Like Steve Jobs in 2005, he shared 3 stories β 3 pivotal decisions that led Nvidia to where it is today.
The stories are about humility, perseverance, and focus. Here theyβ¦
The infrastructure layer for enterprise GPT has been under development.
Continuous Learning_Startup & Investment
AI chef https://twitter.com/aakashg0/status/1666301809768677376?s=46&t=h5Byg6Wosg8MJb4pbPSDow
In this paper, we propose an algorithm that incrementally adds recipes to the robotβs cookbook based on the visual observation of a human chef, enabling the easier and cheaper deployment of robotic chefs. A new recipe is added only if the current observation is substantially different than all recipes in the cookbook, which is decided by computing the similarity between the vectorizations of these two. The algorithm correctly recognizes known recipes in 93% of the demonstrations and successfully learned new recipes when shown, using off-the-shelf neural networks for computer vision.
https://ieeexplore.ieee.org/document/10124218
https://ieeexplore.ieee.org/document/10124218
Saas incumbent which adopt AI vs new startups
Zoom AI
Zoom released a host of generative AI features, including meeting summaries, thread & email drafts, and meeting catch-ups.
It's only available for select plans right now.
Zoom AI
Zoom released a host of generative AI features, including meeting summaries, thread & email drafts, and meeting catch-ups.
It's only available for select plans right now.
New way of search?
Instacart AI
Instacart released Ask Instacart, a first-of-its-kind AI-powered search tool designed to assist with customersβ grocery shopping questions.
The genius? It's integrating natural language chat into Instacart's main search bar.
From decisions about budget and dietary specifications to cooking skills, and preferences, Ask Instacart can help customers answer their questions get ingredients.
In the future, every product will have purpose-driven chatbots like this.
https://twitter.com/aakashg0/status/1666302406383239168?s=46&t=h5Byg6Wosg8MJb4pbPSDow
Instacart AI
Instacart released Ask Instacart, a first-of-its-kind AI-powered search tool designed to assist with customersβ grocery shopping questions.
The genius? It's integrating natural language chat into Instacart's main search bar.
From decisions about budget and dietary specifications to cooking skills, and preferences, Ask Instacart can help customers answer their questions get ingredients.
In the future, every product will have purpose-driven chatbots like this.
https://twitter.com/aakashg0/status/1666302406383239168?s=46&t=h5Byg6Wosg8MJb4pbPSDow
Chatbot on Instagram: https://twitter.com/alex193a/status/1665825192398995469?s=20
Snap AI chat bot feature: https://youtu.be/jTU0OeNBx7s
Snap AI chat bot feature: https://youtu.be/jTU0OeNBx7s
X (formerly Twitter)
Alessandro Paluzzi (@alex193a) on X
#Instagram is working on bringing AI Agents (Bots π€) to your chats for a more fun and engaging experience π
βΉοΈ AI Agents will be able to answer questions and give advice.
You'll be able to choose from 30 different personalities.
βΉοΈ AI Agents will be able to answer questions and give advice.
You'll be able to choose from 30 different personalities.
Continuous Learning_Startup & Investment
Chatbot on Instagram: https://twitter.com/alex193a/status/1665825192398995469?s=20 Snap AI chat bot feature: https://youtu.be/jTU0OeNBx7s
It seems we're witnessing a ubiquitous integration of chatbots across industries!
From B2C platforms like Instagram and Snapchat introducing AI-based features like "My AI," to gaming and social media sectors exploring a multitude of use cases, the transformative power of AI is becoming increasingly apparent.
And let's not forget e-commerce. Consider Instacart's innovative 'Ask Instacart' feature, an AI-powered search tool designed to handle all grocery shopping-related queries. The brilliance lies in integrating natural language chat within Instacart's primary search bar, effectively dealing with inquiries about budgets, dietary specifications, cooking skills, and personal preferences. It's a glimpse into a future where every product might be supported by purpose-driven chatbots like this one.
For more information, follow this link: https://twitter.com/aakashg0/status/1666302406383239168?s=46&t=h5Byg6Wosg8MJb4pbPSDow
Even SaaS companies aren't shy about embracing AI. Take Zoom, for instance. They recently rolled out an AI assistant for their meetings, a development that could ignite intense competition among startups aiming to offer similar solutions.
As we step further into the AI era, I'm curious to hear from you. What AI services have truly fascinated you lately? Or do you have an idea for an AI service that doesn't exist yet but should? I'm looking forward to reading your innovative ideas and insights in the comments!
Feel free to share your thoughts and experiences on this growing trend.
From B2C platforms like Instagram and Snapchat introducing AI-based features like "My AI," to gaming and social media sectors exploring a multitude of use cases, the transformative power of AI is becoming increasingly apparent.
And let's not forget e-commerce. Consider Instacart's innovative 'Ask Instacart' feature, an AI-powered search tool designed to handle all grocery shopping-related queries. The brilliance lies in integrating natural language chat within Instacart's primary search bar, effectively dealing with inquiries about budgets, dietary specifications, cooking skills, and personal preferences. It's a glimpse into a future where every product might be supported by purpose-driven chatbots like this one.
For more information, follow this link: https://twitter.com/aakashg0/status/1666302406383239168?s=46&t=h5Byg6Wosg8MJb4pbPSDow
Even SaaS companies aren't shy about embracing AI. Take Zoom, for instance. They recently rolled out an AI assistant for their meetings, a development that could ignite intense competition among startups aiming to offer similar solutions.
As we step further into the AI era, I'm curious to hear from you. What AI services have truly fascinated you lately? Or do you have an idea for an AI service that doesn't exist yet but should? I'm looking forward to reading your innovative ideas and insights in the comments!
Feel free to share your thoughts and experiences on this growing trend.
https://www.nature.com/articles/s41586-023-06004-9
1. What is it?
Researchers have discovered new sorting algorithms that are faster than any existing algorithms.
The new algorithms were discovered using deep reinforcement learning, a type of artificial intelligence.
The new algorithms could be used to speed up a wide variety of tasks, such as sorting data, searching for information, and comparing files.
The research is still in its early stages, but it has the potential to revolutionize the way we sort data.
2. Why does it matter?
Sorting data is a fundamental operation in many computer algorithms.
Faster sorting algorithms could lead to significant performance improvements in a wide variety of applications.
1. Data mining and machine learning: Sorting is a fundamental operation in data mining and machine learning algorithms. Faster sorting algorithms can lead to faster execution times for these algorithms, which can be beneficial for tasks such as classification, regression, and clustering.
2. Databases: Sorting is often used to improve the performance of database queries. For example, a database server might sort the results of a query before returning them to the client. Faster sorting algorithms can lead to faster query times, which can improve the overall performance of the database.
3. Graphics and animation: Sorting is often used to sort objects in a scene before rendering them. For example, a graphics engine might sort objects by their distance from the camera before rendering them. Faster sorting algorithms can lead to faster rendering times, which can improve the overall performance of the graphics engine.
4. Scientific computing: Sorting is often used in scientific computing applications, such as numerical methods and simulations. Faster sorting algorithms can lead to faster execution times for these applications, which can be beneficial for tasks such as solving differential equations and simulating physical systems.
The research could lead to the development of new algorithms for other computational problems.
3. How could we use the research
- The new algorithms could be used to speed up existing sorting algorithms.
- The new algorithms could be used to develop new sorting algorithms for specific applications.
- The new algorithms could be used to improve the performance of other computer algorithms that rely on sorting.
4. challenges that still need to be addressed:
The new algorithms are still computationally expensive.
The new algorithms have not been thoroughly tested in real-world applications.
The new algorithms may not be suitable for all sorting problems.
1. What is it?
Researchers have discovered new sorting algorithms that are faster than any existing algorithms.
The new algorithms were discovered using deep reinforcement learning, a type of artificial intelligence.
The new algorithms could be used to speed up a wide variety of tasks, such as sorting data, searching for information, and comparing files.
The research is still in its early stages, but it has the potential to revolutionize the way we sort data.
2. Why does it matter?
Sorting data is a fundamental operation in many computer algorithms.
Faster sorting algorithms could lead to significant performance improvements in a wide variety of applications.
1. Data mining and machine learning: Sorting is a fundamental operation in data mining and machine learning algorithms. Faster sorting algorithms can lead to faster execution times for these algorithms, which can be beneficial for tasks such as classification, regression, and clustering.
2. Databases: Sorting is often used to improve the performance of database queries. For example, a database server might sort the results of a query before returning them to the client. Faster sorting algorithms can lead to faster query times, which can improve the overall performance of the database.
3. Graphics and animation: Sorting is often used to sort objects in a scene before rendering them. For example, a graphics engine might sort objects by their distance from the camera before rendering them. Faster sorting algorithms can lead to faster rendering times, which can improve the overall performance of the graphics engine.
4. Scientific computing: Sorting is often used in scientific computing applications, such as numerical methods and simulations. Faster sorting algorithms can lead to faster execution times for these applications, which can be beneficial for tasks such as solving differential equations and simulating physical systems.
The research could lead to the development of new algorithms for other computational problems.
3. How could we use the research
- The new algorithms could be used to speed up existing sorting algorithms.
- The new algorithms could be used to develop new sorting algorithms for specific applications.
- The new algorithms could be used to improve the performance of other computer algorithms that rely on sorting.
4. challenges that still need to be addressed:
The new algorithms are still computationally expensive.
The new algorithms have not been thoroughly tested in real-world applications.
The new algorithms may not be suitable for all sorting problems.
Nature
Faster sorting algorithms discovered using deep reinforcement learning
Nature - Artificial intelligence goes beyond the current state of the art by discovering unknown, faster sorting algorithms as a single-player game using a deep reinforcement learning agent. These...
VC λ High Risk, High Return μ μΆκ΅¬νλ λνμ μΈ μ
μ΄λ€.
κ³Όμ₯μ΄ μμ¬ μκΈ΄ νμ§λ§, 100κ° μ€ 95κ°κ° λ§ν΄λ 5κ°κ° ν¬κ² μ±κ³΅νλ©΄ ν° μ΄μ΅μ 보λ μ μΌλ‘λ μλ €μ Έ μλ€.
μ΅κ·Ό μ€λ¦¬μ½λ°Έλ¦¬ λ΄ μ΄μ°½κΈ° κΈ°μ μ€μ¬μΌλ‘ ν¬μνλ VCμ κ³μ μ§μΈ λΆκ³Ό λννλ©°, μ μ€ννΈμ ν¬μκ° μ΄λ €μ΄μ§? κ·Έλ°λ° μ μ΄ μ μ κ³μ νμλμ§? λ¬Όμ΄λ³΄λ©° λνν κΈ°νκ° μμλ€.
κ·Έ λΆκ³Ό λλ λνμ ν΅μ¬μ μλμ κ°λ€.
"λ₯λ ₯μ΄ μ’μ 보μ΄λ μ¬λμ λ§μλ, μ€λ λ²ν°λ μ¬λμ λλ¬Όλ€.
μ€λ λ²ν°λ μ¬λμ μμ΄λ, μ§μ§ μνλ μ¬λμ λλ¬Όλ€.
μνλ μ¬λμ μμ΄λ, μΈκ²©κ³Ό 리λμμ κ²ΈλΉν μ¬λμ λλ¬Όλ€.
μΈκ²©κ³Ό 리λμμ κ²ΈλΉν μ¬λμ μμ΄λ, μ΄κΉμ§ νκ³ λλ νμ λλ¬Όλ€.
ν λ§λλ‘, λ₯λ ₯μ΄ μμΌλ©΄μλ, μ€λ λ²ν°λ©΄μλ, μ νλ©΄μλ, μ’μ νμ ꡬμΆ/μ΄μνλ©΄μλ, μ΄ λλ₯Ό κΈ°λ€λ¦¬κ³ κ·Έ μ΄μ ν μ μλ μ¬λμ μ°Ύλ κ²μ λ§€μ° μ΄λ ΅λ€.
κ·Έλλ μ°λ¦¬λ κ·Έλ° κ°λ₯μ±μ΄ μλ μ¬λμ μ°Ύμ ν¬μνλ€. κ²°κ΅ μ€ννΈμ μ μ¬λμ΄ μΈμμ λ°κΏλκ°λ μ μ΄κΈ° λλ¬Έμ΄λ€. κ·Έλ¦¬κ³ μ°λ¦¬κ° ν¬μν νμ΄ λΉΌμ΄λ μ νμ μμΈμ μμ₯κ³Ό μΈμμ λ°κΏλκ°λ κ΄κ²½μ λ³Ό λ ν¬μμλ‘μ ν° λ³΄λμ λλλ€"
κ·Έ λΆκ³Ό λννλ©° μ€μ€λ‘λ₯Ό λμλ³΄κ² λμλ€. μ½ 3λ λ€, λλ λ₯λ ₯, μ§κ΅¬λ ₯/μ§λ , μ±κ³Όλ₯Ό λ§λ€μ΄ λΈ κ²½ν, 리λμ, κ·Έλ¦¬κ³ μ΄μ κ°μ§κ³ μμλ μ¬λμΌλ‘ νκ° λ°μ μ μμκΉ?
μ΄ κ΅¬μμμ ν° μ±κ³΅μ λ§λ€μ΄ λ΄λ κ²μ΄ λ§€μ° μ΄λ ΅μ§λ§, κ·Έλμ λ ν΄λ΄κ³ μΆλ€λ μκ°μ΄ λλ ν루μλ€.
κ³Όμ₯μ΄ μμ¬ μκΈ΄ νμ§λ§, 100κ° μ€ 95κ°κ° λ§ν΄λ 5κ°κ° ν¬κ² μ±κ³΅νλ©΄ ν° μ΄μ΅μ 보λ μ μΌλ‘λ μλ €μ Έ μλ€.
μ΅κ·Ό μ€λ¦¬μ½λ°Έλ¦¬ λ΄ μ΄μ°½κΈ° κΈ°μ μ€μ¬μΌλ‘ ν¬μνλ VCμ κ³μ μ§μΈ λΆκ³Ό λννλ©°, μ μ€ννΈμ ν¬μκ° μ΄λ €μ΄μ§? κ·Έλ°λ° μ μ΄ μ μ κ³μ νμλμ§? λ¬Όμ΄λ³΄λ©° λνν κΈ°νκ° μμλ€.
κ·Έ λΆκ³Ό λλ λνμ ν΅μ¬μ μλμ κ°λ€.
"λ₯λ ₯μ΄ μ’μ 보μ΄λ μ¬λμ λ§μλ, μ€λ λ²ν°λ μ¬λμ λλ¬Όλ€.
μ€λ λ²ν°λ μ¬λμ μμ΄λ, μ§μ§ μνλ μ¬λμ λλ¬Όλ€.
μνλ μ¬λμ μμ΄λ, μΈκ²©κ³Ό 리λμμ κ²ΈλΉν μ¬λμ λλ¬Όλ€.
μΈκ²©κ³Ό 리λμμ κ²ΈλΉν μ¬λμ μμ΄λ, μ΄κΉμ§ νκ³ λλ νμ λλ¬Όλ€.
ν λ§λλ‘, λ₯λ ₯μ΄ μμΌλ©΄μλ, μ€λ λ²ν°λ©΄μλ, μ νλ©΄μλ, μ’μ νμ ꡬμΆ/μ΄μνλ©΄μλ, μ΄ λλ₯Ό κΈ°λ€λ¦¬κ³ κ·Έ μ΄μ ν μ μλ μ¬λμ μ°Ύλ κ²μ λ§€μ° μ΄λ ΅λ€.
κ·Έλλ μ°λ¦¬λ κ·Έλ° κ°λ₯μ±μ΄ μλ μ¬λμ μ°Ύμ ν¬μνλ€. κ²°κ΅ μ€ννΈμ μ μ¬λμ΄ μΈμμ λ°κΏλκ°λ μ μ΄κΈ° λλ¬Έμ΄λ€. κ·Έλ¦¬κ³ μ°λ¦¬κ° ν¬μν νμ΄ λΉΌμ΄λ μ νμ μμΈμ μμ₯κ³Ό μΈμμ λ°κΏλκ°λ κ΄κ²½μ λ³Ό λ ν¬μμλ‘μ ν° λ³΄λμ λλλ€"
κ·Έ λΆκ³Ό λννλ©° μ€μ€λ‘λ₯Ό λμλ³΄κ² λμλ€. μ½ 3λ λ€, λλ λ₯λ ₯, μ§κ΅¬λ ₯/μ§λ , μ±κ³Όλ₯Ό λ§λ€μ΄ λΈ κ²½ν, 리λμ, κ·Έλ¦¬κ³ μ΄μ κ°μ§κ³ μμλ μ¬λμΌλ‘ νκ° λ°μ μ μμκΉ?
μ΄ κ΅¬μμμ ν° μ±κ³΅μ λ§λ€μ΄ λ΄λ κ²μ΄ λ§€μ° μ΄λ ΅μ§λ§, κ·Έλμ λ ν΄λ΄κ³ μΆλ€λ μκ°μ΄ λλ ν루μλ€.
π1
Product Design - Karri Saarinen (Linear) Founder and CEO of Linear.