PACO: Parts and Attributes of Common Objects
Sometimes object detection is not enough and you need more detail about object. Especially, when parts of objects is matters in your task. Then this dataset is for you from Facebook research team.
PACO is a detection dataset that goes beyond traditional object boxes and masks and provides richer annotations such as part masks and attributes. It spans 75 object categories, 456 object-part categories and 55 attributes across image (LVIS) and video (Ego4D) datasets.
Paper:
https://arxiv.org/pdf/2301.01795.pdf
Github:
https://github.com/facebookresearch/paco
Visualization:
https://github.com/facebookresearch/paco/tree/main/notebooks
@computer_science_and_programming
Sometimes object detection is not enough and you need more detail about object. Especially, when parts of objects is matters in your task. Then this dataset is for you from Facebook research team.
PACO is a detection dataset that goes beyond traditional object boxes and masks and provides richer annotations such as part masks and attributes. It spans 75 object categories, 456 object-part categories and 55 attributes across image (LVIS) and video (Ego4D) datasets.
Paper:
https://arxiv.org/pdf/2301.01795.pdf
Github:
https://github.com/facebookresearch/paco
Visualization:
https://github.com/facebookresearch/paco/tree/main/notebooks
@computer_science_and_programming
MIT Introduction to Deep Learning - 2023 Starting soon! MIT Intro to DL is one of the most concise AI courses on the web that cover basic deep learning techniques, architectures, and applications.
2023 lectures are starting in just one day, Jan 9th!
Link to register:
http://introtodeeplearning.com
MIT Introduction to Deep Learning The 2022 lectures can be found here:
https://m.youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI
๐ @computer_science_and_programming
2023 lectures are starting in just one day, Jan 9th!
Link to register:
http://introtodeeplearning.com
MIT Introduction to Deep Learning The 2022 lectures can be found here:
https://m.youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI
๐ @computer_science_and_programming
This media is not supported in your browser
VIEW IN TELEGRAM
YOLOv8 is the newest state-of-the-art YOLO model that can be used for object detection, image classification, and instance segmentation tasks. YOLOv8 includes numerous architectural and developer experience changes and improvements over YOLOv5.
Code:
https://github.com/ultralytics/ultralytics
What's New in YOLOv8 ?
https://blog.roboflow.com/whats-new-in-yolov8/
Yolov8 Instance Segmentation (ONNX):
https://github.com/ibaiGorordo/ONNX-YOLOv8-Instance-Segmentation
๐ @computer_science_and_programming
Code:
https://github.com/ultralytics/ultralytics
What's New in YOLOv8 ?
https://blog.roboflow.com/whats-new-in-yolov8/
Yolov8 Instance Segmentation (ONNX):
https://github.com/ibaiGorordo/ONNX-YOLOv8-Instance-Segmentation
๐ @computer_science_and_programming
This media is not supported in your browser
VIEW IN TELEGRAM
Box2Mask: Box-supervised Instance Segmentation via Level-set Evolution
BoxInstSeg is a toolbox that aims to provide state-of-the-art box-supervised instance segmentation algorithms. It supports instance segmentation with only box annotations.
Github:
https://github.com/LiWentomng/BoxInstSeg
Paper:
https://arxiv.org/pdf/2212.01579.pdf
๐@computer_science_and_programming
BoxInstSeg is a toolbox that aims to provide state-of-the-art box-supervised instance segmentation algorithms. It supports instance segmentation with only box annotations.
Github:
https://github.com/LiWentomng/BoxInstSeg
Paper:
https://arxiv.org/pdf/2212.01579.pdf
๐@computer_science_and_programming
This media is not supported in your browser
VIEW IN TELEGRAM
GLIGEN: Open-Set Grounded Text-to-Image Generation.
GLIGEN (Grounded-Language-to-Image Generation) a novel approach that builds upon and extends the functionality of existing pre-trained text-to-image diffusion models by enabling them to also be conditioned on grounding inputs.
Project page:
https://gligen.github.io/
Paper:
https://arxiv.org/abs/2301.07093
Github (coming soon):
https://github.com/gligen/GLIGEN
Demo:
https://huggingface.co/spaces/gligen/demo
๐@computer_science_and_programming
GLIGEN (Grounded-Language-to-Image Generation) a novel approach that builds upon and extends the functionality of existing pre-trained text-to-image diffusion models by enabling them to also be conditioned on grounding inputs.
Project page:
https://gligen.github.io/
Paper:
https://arxiv.org/abs/2301.07093
Github (coming soon):
https://github.com/gligen/GLIGEN
Demo:
https://huggingface.co/spaces/gligen/demo
๐@computer_science_and_programming
Cut and Learn for Unsupervised Object Detection and Instance Segmentation
Cut-and-LEaRn (CutLER) is a simple approach for training object detection and instance segmentation models without human annotations. It outperforms previous SOTA by 2.7 times for AP50 and 2.6 times for AR on 11 benchmarks.
Paper:
https://arxiv.org/pdf/2301.11320.pdf
Github:
https://github.com/facebookresearch/CutLER
Demo:
https://colab.research.google.com/drive/1NgEyFHvOfuA2MZZnfNPWg1w5gSr3HOBb?usp=sharing
๐@computer_science_and_programming
Cut-and-LEaRn (CutLER) is a simple approach for training object detection and instance segmentation models without human annotations. It outperforms previous SOTA by 2.7 times for AP50 and 2.6 times for AR on 11 benchmarks.
Paper:
https://arxiv.org/pdf/2301.11320.pdf
Github:
https://github.com/facebookresearch/CutLER
Demo:
https://colab.research.google.com/drive/1NgEyFHvOfuA2MZZnfNPWg1w5gSr3HOBb?usp=sharing
๐@computer_science_and_programming
Audio AI Timeline
Here we will keep track of the latest AI models for audio generation, starting in 2023!
โช๏ธSingSong: Generating musical accompaniments from singing
- Paper
โช๏ธAudioLDM: Text-to-Audio Generation with Latent Diffusion Models
- Paper
- Code
โช๏ธMoรปsai: Text-to-Music Generation with Long-Context Latent Diffusion
- Paper
- Code
โช๏ธMake-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion Models
- Paper
โช๏ธNoise2Music
โช๏ธRAVE2
- Paper
- Code
โช๏ธMusicLM: Generating Music From Text
- Paper
โช๏ธMsanii: High Fidelity Music Synthesis on a Shoestring Budget
- Paper
- Code
- HuggingFace
โช๏ธArchiSound: Audio Generation with Diffusion
- Paper
- Code
โช๏ธVALL-E: Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers
- Paper
๐@computer_science_and_programming
Here we will keep track of the latest AI models for audio generation, starting in 2023!
โช๏ธSingSong: Generating musical accompaniments from singing
- Paper
โช๏ธAudioLDM: Text-to-Audio Generation with Latent Diffusion Models
- Paper
- Code
โช๏ธMoรปsai: Text-to-Music Generation with Long-Context Latent Diffusion
- Paper
- Code
โช๏ธMake-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion Models
- Paper
โช๏ธNoise2Music
โช๏ธRAVE2
- Paper
- Code
โช๏ธMusicLM: Generating Music From Text
- Paper
โช๏ธMsanii: High Fidelity Music Synthesis on a Shoestring Budget
- Paper
- Code
- HuggingFace
โช๏ธArchiSound: Audio Generation with Diffusion
- Paper
- Code
โช๏ธVALL-E: Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers
- Paper
๐@computer_science_and_programming
This media is not supported in your browser
VIEW IN TELEGRAM
Gen-1: The Next Step Forward for Generative AI
Use words and images to generate new videos out of existing
Introducing Gen-1: a new AI model that uses language and images to generate new videos out of existing ones.
https://research.runwayml.com/gen1
โญ๏ธ Project:
https://research.runwayml.com/gen1
โ Paper:
https://arxiv.org/abs/2302.03011
๐Request form:
https://docs.google.com/forms/d/e/1FAIpQLSfU0O_i1dym30hEI33teAvCRQ1i8UrGgXd4BPrvBWaOnDgs9g/viewform
๐@computer_science_and_programming
Use words and images to generate new videos out of existing
Introducing Gen-1: a new AI model that uses language and images to generate new videos out of existing ones.
https://research.runwayml.com/gen1
โญ๏ธ Project:
https://research.runwayml.com/gen1
โ Paper:
https://arxiv.org/abs/2302.03011
๐Request form:
https://docs.google.com/forms/d/e/1FAIpQLSfU0O_i1dym30hEI33teAvCRQ1i8UrGgXd4BPrvBWaOnDgs9g/viewform
๐@computer_science_and_programming
This media is not supported in your browser
VIEW IN TELEGRAM
YOWOv2: A Stronger yet Efficient Multi-level Detection Framework for Real-time Spatio-temporal Action Detection
SPATIO-temporal action detection (STAD) aims to detect action instances in the current frame, which it has been widely applied, such as video surveillance and somatosensory game.
Paper:
https://arxiv.org/pdf/2302.06848.pdf
Github:
https://github.com/yjh0410/YOWOv2
Dataset:
https://drive.google.com/file/d/1Dwh90pRi7uGkH5qLRjQIFiEmMJrAog5J/view?usp=sharing
๐@computer_science_and_programming
SPATIO-temporal action detection (STAD) aims to detect action instances in the current frame, which it has been widely applied, such as video surveillance and somatosensory game.
Paper:
https://arxiv.org/pdf/2302.06848.pdf
Github:
https://github.com/yjh0410/YOWOv2
Dataset:
https://drive.google.com/file/d/1Dwh90pRi7uGkH5qLRjQIFiEmMJrAog5J/view?usp=sharing
๐@computer_science_and_programming
This media is not supported in your browser
VIEW IN TELEGRAM
3D-aware Conditional Image Synthesis (pix2pix3D)
Pix2pix3D synthesizes 3D objects (neural fields) given a 2D label map, such as a segmentation or edge map
Github:
https://github.com/dunbar12138/pix2pix3D
Paper:
https://arxiv.org/abs/2302.08509
Project:
https://www.cs.cmu.edu/~pix2pix3D/
Datasets:
CelebAMask , AFHQ-Cat-Seg , Shapenet-Car-Edge
๐@computer_science_and_programming
Pix2pix3D synthesizes 3D objects (neural fields) given a 2D label map, such as a segmentation or edge map
Github:
https://github.com/dunbar12138/pix2pix3D
Paper:
https://arxiv.org/abs/2302.08509
Project:
https://www.cs.cmu.edu/~pix2pix3D/
Datasets:
CelebAMask , AFHQ-Cat-Seg , Shapenet-Car-Edge
๐@computer_science_and_programming
Efficient Teacher: Semi-Supervised Object Detection for YOLOv5
โ Efficient Teacher introduces semi-supervised object detection into practical applications, enabling users to obtain a strong generalization capability with only a small amount of labeled data and large amount of unlabeled data.
โ Efficient Teacher provides category and custom uniform sampling, which can quickly improve the network performance in actual business scenarios.
Paper:
https://arxiv.org/abs/2302.07577
Github:
https://github.com/AlibabaResearch/efficientteacher
๐@computer_science_and_programming
โ Efficient Teacher introduces semi-supervised object detection into practical applications, enabling users to obtain a strong generalization capability with only a small amount of labeled data and large amount of unlabeled data.
โ Efficient Teacher provides category and custom uniform sampling, which can quickly improve the network performance in actual business scenarios.
Paper:
https://arxiv.org/abs/2302.07577
Github:
https://github.com/AlibabaResearch/efficientteacher
๐@computer_science_and_programming
Multivariate Probabilistic Time Series Forecasting with Informer
Efficient transformer-based model for LSTF.
Method introduces a Probabilistic Attention mechanism to select the โactiveโ queries rather than the โlazyโ queries and provides a sparse Transformer thus mitigating the quadratic compute and memory requirements of vanilla attention.
๐คHugging face:
https://huggingface.co/blog/informer
โฉ Paper:
https://huggingface.co/docs/transformers/main/en/model_doc/informer
โญ๏ธ Colab:
https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multivariate_informer.ipynb
๐จ Dataset:
https://huggingface.co/docs/datasets/v2.7.0/en/package_reference/main_classes#datasets.Dataset.set_transform
๐@computer_science_and_programming
Efficient transformer-based model for LSTF.
Method introduces a Probabilistic Attention mechanism to select the โactiveโ queries rather than the โlazyโ queries and provides a sparse Transformer thus mitigating the quadratic compute and memory requirements of vanilla attention.
๐คHugging face:
https://huggingface.co/blog/informer
โฉ Paper:
https://huggingface.co/docs/transformers/main/en/model_doc/informer
โญ๏ธ Colab:
https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multivariate_informer.ipynb
๐จ Dataset:
https://huggingface.co/docs/datasets/v2.7.0/en/package_reference/main_classes#datasets.Dataset.set_transform
๐@computer_science_and_programming
This media is not supported in your browser
VIEW IN TELEGRAM
ViperGPT: Visual Inference via Python Execution for Reasoning
ViperGPT, a framework that leverages code-generation models to compose vision-and-language models into subroutines to produce a result for any query.
Github:
https://github.com/cvlab-columbia/viper
Paper:
https://arxiv.org/pdf/2303.08128.pdf
Project:
https://paperswithcode.com/dataset/beat
๐@computer_science_and_programming
ViperGPT, a framework that leverages code-generation models to compose vision-and-language models into subroutines to produce a result for any query.
Github:
https://github.com/cvlab-columbia/viper
Paper:
https://arxiv.org/pdf/2303.08128.pdf
Project:
https://paperswithcode.com/dataset/beat
๐@computer_science_and_programming
This media is not supported in your browser
VIEW IN TELEGRAM
Test of Time: Instilling Video-Language Models with a Sense of Time
GPT-5 will likely have video abilities, but will it have a sense of time? Here is answer to this question in #CVPR2023 paper by student of University of Amsterdam to learn how to instil time into video-language foundation models.
Paper:
https://arxiv.org/abs/2301.02074
Code:
https://github.com/bpiyush/TestOfTime
Project Page:
https://bpiyush.github.io/testoftime-website/
๐ @computer_science_and_programming
GPT-5 will likely have video abilities, but will it have a sense of time? Here is answer to this question in #CVPR2023 paper by student of University of Amsterdam to learn how to instil time into video-language foundation models.
Paper:
https://arxiv.org/abs/2301.02074
Code:
https://github.com/bpiyush/TestOfTime
Project Page:
https://bpiyush.github.io/testoftime-website/
๐ @computer_science_and_programming
DragGAN.gif
20.6 MB
Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold
Paper:
https://arxiv.org/abs/2305.10973
Github:
https://github.com/XingangPan/DragGAN
Project page:
https://vcai.mpi-inf.mpg.de/projects/DragGAN/
๐ @computer_science_and_programming
Paper:
https://arxiv.org/abs/2305.10973
Github:
https://github.com/XingangPan/DragGAN
Project page:
https://vcai.mpi-inf.mpg.de/projects/DragGAN/
๐ @computer_science_and_programming
๐ญ GRES: Generalized Referring Expression Segmentation
New benchmark (GRES), which extends the classic RES to allow expressions to refer to an arbitrary number of target objects.
๐ฅ Github: https://github.com/henghuiding/ReLA
โฉ Paper: https://arxiv.org/abs/2306.00968
๐ Project: https://henghuiding.github.io/GRES/
๐ New dataset: https://github.com/henghuiding/gRefCOCO
๐ @computer_science_and_programming
New benchmark (GRES), which extends the classic RES to allow expressions to refer to an arbitrary number of target objects.
๐ฅ Github: https://github.com/henghuiding/ReLA
โฉ Paper: https://arxiv.org/abs/2306.00968
๐ Project: https://henghuiding.github.io/GRES/
๐ New dataset: https://github.com/henghuiding/gRefCOCO
๐ @computer_science_and_programming
80+ Jupyter Notebook tutorials on image classification, object detection and image segmentation in various domains
๐ Agriculture and Food
๐ Medical and Healthcare
๐ Satellite
๐ Security and Surveillance
๐ ADAS and Self Driving Cars
๐ Retail and E-Commerce
๐ Wildlife
Classification library
https://github.com/Tessellate-Imaging/monk_v1
Notebooks - https://github.com/Tessellate-Imaging/monk_v1/tree/master/study_roadmaps/4_image_classification_zoo
Detection and Segmentation Library
https://github.com/Tessellate-Imaging/
Monk_Object_Detection
Notebooks: https://github.com/Tessellate-Imaging/Monk_Object_Detection/tree/master/application_model_zoo
๐ @computer_science_and_programming
๐ Agriculture and Food
๐ Medical and Healthcare
๐ Satellite
๐ Security and Surveillance
๐ ADAS and Self Driving Cars
๐ Retail and E-Commerce
๐ Wildlife
Classification library
https://github.com/Tessellate-Imaging/monk_v1
Notebooks - https://github.com/Tessellate-Imaging/monk_v1/tree/master/study_roadmaps/4_image_classification_zoo
Detection and Segmentation Library
https://github.com/Tessellate-Imaging/
Monk_Object_Detection
Notebooks: https://github.com/Tessellate-Imaging/Monk_Object_Detection/tree/master/application_model_zoo
๐ @computer_science_and_programming