π§ Focal Sparse Convolutional Networks for 3D Object Detection (CVPR 2022, Oral)
Github: https://github.com/dvlab-research/focalsconv
Paper: https://arxiv.org/abs/2204.12463
Dataset: https://paperswithcode.com/dataset/nuscenes
@computer_science_and_programming
Github: https://github.com/dvlab-research/focalsconv
Paper: https://arxiv.org/abs/2204.12463
Dataset: https://paperswithcode.com/dataset/nuscenes
@computer_science_and_programming
π116π10
RefineMask: Towards High-Quality Instance Segmentation
with Fine-Grained Features (CVPR 2021)
Paper:
https://openaccess.thecvf.com/content/CVPR2021/papers/Zhang_RefineMask_Towards_High-Quality_Instance_Segmentation_With_Fine-Grained_Features_CVPR_2021_paper.pdf
Source:
https://github.com/zhanggang001/RefineMask
@computer_science_and_programming
with Fine-Grained Features (CVPR 2021)
Paper:
https://openaccess.thecvf.com/content/CVPR2021/papers/Zhang_RefineMask_Towards_High-Quality_Instance_Segmentation_With_Fine-Grained_Features_CVPR_2021_paper.pdf
Source:
https://github.com/zhanggang001/RefineMask
@computer_science_and_programming
π137π10
This media is not supported in your browser
VIEW IN TELEGRAM
AdaptFormer: Adapting Vision Transformers for Scalable Visual Recognition
Github: https://github.com/ShoufaChen/AdaptFormer
Paper: https://arxiv.org/abs/2205.13535v1
Dataset: https://paperswithcode.com/dataset/something-something-v2
@computer_science_and_programming
Github: https://github.com/ShoufaChen/AdaptFormer
Paper: https://arxiv.org/abs/2205.13535v1
Dataset: https://paperswithcode.com/dataset/something-something-v2
@computer_science_and_programming
π102π1
Squeezeformer: An Efficient Transformer for Automatic Speech Recognition
Github: https://github.com/kssteven418/squeezeformer
Paper: https://arxiv.org/abs/2206.00888v1
Dataset: https://paperswithcode.com/dataset/librispeech
@computer_science_and_programming
Github: https://github.com/kssteven418/squeezeformer
Paper: https://arxiv.org/abs/2206.00888v1
Dataset: https://paperswithcode.com/dataset/librispeech
@computer_science_and_programming
π127π6
MIT, Introduction to Deep Learning, 2022 Lecture series
Website:
http://introtodeeplearning.com/
Lecture:
https://www.youtube.com/watch?v=7sB052Pz0sQ&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI
@computer_science_and_programming
Website:
http://introtodeeplearning.com/
Lecture:
https://www.youtube.com/watch?v=7sB052Pz0sQ&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI
@computer_science_and_programming
π273π7
CVPR 2022 open access
All accepted papers list:
https://openaccess.thecvf.com/CVPR2022?day=2022-06-21
@computer_science_and_programming
All accepted papers list:
https://openaccess.thecvf.com/CVPR2022?day=2022-06-21
@computer_science_and_programming
π85π2
Prosody Cloning in Zero-Shot Multispeaker Text-to-Speech
IMS Toucan is a toolkit for teaching, training and using state-of-the-art Speech Synthesis models.
Github: https://github.com/DigitalPhonetics/IMS-Toucan
https://github.com/rballester/tntorch
Pre-Generated Audios: https://multilingualtoucan.github.io/
Cloning prosody across speakers: https://toucanprosodycloningdemo.github.io/
Interactive Demo: https://huggingface.co/spaces/Flux9665/IMS-Toucan
Paper: https://arxiv.org/abs/2206.12229v1
@computer_science_and_programming
IMS Toucan is a toolkit for teaching, training and using state-of-the-art Speech Synthesis models.
Github: https://github.com/DigitalPhonetics/IMS-Toucan
https://github.com/rballester/tntorch
Pre-Generated Audios: https://multilingualtoucan.github.io/
Cloning prosody across speakers: https://toucanprosodycloningdemo.github.io/
Interactive Demo: https://huggingface.co/spaces/Flux9665/IMS-Toucan
Paper: https://arxiv.org/abs/2206.12229v1
@computer_science_and_programming
π130
Instance Shadow Detection with A Single-Stage Detector
Deep framework, and an evaluation metric to approach this new task.
Github: https://github.com/stevewongv/InstanceShadowDetection
Instance Shadow Detection: https://github.com/stevewongv/SSIS
Video: https://www.youtube.com/watch?v=p0b_2SsFypw
Colab: https://colab.research.google.com/drive/1y9UpS5uA1YuoMyvYVzcKL4ltA_FDu_x0?usp=sharing
Paper: https://arxiv.org/abs/2207.04614v1
Datasets: https://paperswithcode.com/dataset/soba
@computer_science_and_programming
Deep framework, and an evaluation metric to approach this new task.
Github: https://github.com/stevewongv/InstanceShadowDetection
Instance Shadow Detection: https://github.com/stevewongv/SSIS
Video: https://www.youtube.com/watch?v=p0b_2SsFypw
Colab: https://colab.research.google.com/drive/1y9UpS5uA1YuoMyvYVzcKL4ltA_FDu_x0?usp=sharing
Paper: https://arxiv.org/abs/2207.04614v1
Datasets: https://paperswithcode.com/dataset/soba
@computer_science_and_programming
π168π6
Weakly Supervised Object Localization via Transformer with Implicit Spatial Calibration
learnable parameter to dynamically adjust the semantic correlations and spatial context intensities for effective information propagation.
Github: https://github.com/164140757/scm
Paper: https://arxiv.org/abs/2207.10447v1
Dataset: https://paperswithcode.com/dataset/cub-200-2011
@computer_science_and_programming
learnable parameter to dynamically adjust the semantic correlations and spatial context intensities for effective information propagation.
Github: https://github.com/164140757/scm
Paper: https://arxiv.org/abs/2207.10447v1
Dataset: https://paperswithcode.com/dataset/cub-200-2011
@computer_science_and_programming
π102π6
This media is not supported in your browser
VIEW IN TELEGRAM
UFO: segmentation 140+ FPS
πUnified Transformer Framework for Co-Segmentation, Co-Saliency & Salient Object Detection. All in one!
ππ’π π‘π₯π’π π‘ππ¬:
β Unified framework for co-segmentation
β Co-segmentation, co-saliency, saliency
β Block for long-range dependencies
β Able to reach for 140 FPS in inference
β The new SOTA on multiple datasets
Paper:
https://arxiv.org/pdf/2203.04708v2.pdf
Code:
https://github.com/suyukun666/UFO
@computer_science_and_programming
πUnified Transformer Framework for Co-Segmentation, Co-Saliency & Salient Object Detection. All in one!
ππ’π π‘π₯π’π π‘ππ¬:
β Unified framework for co-segmentation
β Co-segmentation, co-saliency, saliency
β Block for long-range dependencies
β Able to reach for 140 FPS in inference
β The new SOTA on multiple datasets
Paper:
https://arxiv.org/pdf/2203.04708v2.pdf
Code:
https://github.com/suyukun666/UFO
@computer_science_and_programming
π205π3
Harvard CS109A #DataScience course materials β huge collection free & open!
1. Lecture notes
2. R code, #Python notebooks
3. Lab material
4. Advanced sections
and more ...
https://harvard-iacs.github.io/2019-CS109A/pages/materials.html
@computer_science_and_programming
1. Lecture notes
2. R code, #Python notebooks
3. Lab material
4. Advanced sections
and more ...
https://harvard-iacs.github.io/2019-CS109A/pages/materials.html
@computer_science_and_programming
π333π18
Resources for performing deep learning on satellite imagery:
- Techniques
- Datasets
- ML best Practice
- Courses
and more ...
@computer_science_and_programming
- Techniques
- Datasets
- ML best Practice
- Courses
and more ...
@computer_science_and_programming
π301π17
This media is not supported in your browser
VIEW IN TELEGRAM
VToonify: Controllable High-Resolution Portrait Video Style Transfer
@computer_science_and_programming
@computer_science_and_programming
π91
VToonify: Controllable High-Resolution Portrait Video Style Transfer
Github:
https://github.com/williamyang1991/vtoonify
Colab code example
https://colab.research.google.com/github/williamyang1991/VToonify/blob/master/notebooks/inference_playground.ipynb
Paper:
https://arxiv.org/pdf/2209.11224.pdf
Dataset:
https://paperswithcode.com/dataset/faceforensics-1
Video explanation:
https://www.youtube.com/watch?v=0_OmVhDgYuY
@computer_science_and_programming
Github:
https://github.com/williamyang1991/vtoonify
Colab code example
https://colab.research.google.com/github/williamyang1991/VToonify/blob/master/notebooks/inference_playground.ipynb
Paper:
https://arxiv.org/pdf/2209.11224.pdf
Dataset:
https://paperswithcode.com/dataset/faceforensics-1
Video explanation:
https://www.youtube.com/watch?v=0_OmVhDgYuY
@computer_science_and_programming
π183π4
This media is not supported in your browser
VIEW IN TELEGRAM
Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild
Paper:
https://arxiv.org/pdf/2207.10660.pdf
Github:
https://github.com/facebookresearch/omni3d
Project page:
https://garrickbrazil.com/omni3d/
@computer_science_and_programming
Paper:
https://arxiv.org/pdf/2207.10660.pdf
Github:
https://github.com/facebookresearch/omni3d
Project page:
https://garrickbrazil.com/omni3d/
@computer_science_and_programming
π156
You don't need to spend several $ππ¬π¬π¬π to learn Data Science.β
Stanford University, Harvard University & Massachusetts Institute of Technology is providing free courses.π₯
Here's 8 free Courses that'll teach you better than the paid ones:
1. CS50βs Introduction to Artificial Intelligence with Python (Harvard)
https://lnkd.in/d9CkkfGK
2. Data Science: Machine Learning (Harvard)
https://lnkd.in/dQ7zkCv9
3. Artificial Intelligence (MIT)
https://lnkd.in/dG5BCPen
4. Introduction to Computational Thinking and Data Science (MIT)
https://lnkd.in/ddm5Ckk9
5. Machine Learning (MIT)
https://lnkd.in/dJEjStCw
6. Matrix Methods in Data Analysis, Signal Processing, and Machine Learning (MIT)
https://lnkd.in/dkpyt6qr
7. Statistical Learning (Stanford)
https://lnkd.in/dymn4hbD
8. Mining Massive Data Sets (Stanford)
πhttps://lnkd.in/d2uf-FkB
@computer_science_and_programming
Stanford University, Harvard University & Massachusetts Institute of Technology is providing free courses.π₯
Here's 8 free Courses that'll teach you better than the paid ones:
1. CS50βs Introduction to Artificial Intelligence with Python (Harvard)
https://lnkd.in/d9CkkfGK
2. Data Science: Machine Learning (Harvard)
https://lnkd.in/dQ7zkCv9
3. Artificial Intelligence (MIT)
https://lnkd.in/dG5BCPen
4. Introduction to Computational Thinking and Data Science (MIT)
https://lnkd.in/ddm5Ckk9
5. Machine Learning (MIT)
https://lnkd.in/dJEjStCw
6. Matrix Methods in Data Analysis, Signal Processing, and Machine Learning (MIT)
https://lnkd.in/dkpyt6qr
7. Statistical Learning (Stanford)
https://lnkd.in/dymn4hbD
8. Mining Massive Data Sets (Stanford)
πhttps://lnkd.in/d2uf-FkB
@computer_science_and_programming
lnkd.in
LinkedIn
This link will take you to a page thatβs not on LinkedIn
π455π8β€1
SSL4EO-S12: A Large-Scale Multi-Modal, Multi-Temporal Dataset for Self-Supervised Learning in Earth Observation
The dataset consists of unlabeled patch triplets from 251,079 locations across the globe, each patch covering 2640m x 2640m and including 4 seasonal time stamps.
Github:
https://github.com/zhu-xlab/ssl4eo-s12
Paper:
https://arxiv.org/abs/2211.07044v1
Dataset:
https://mediatum.ub.tum.de/1660427
@computer_science_and_programming
The dataset consists of unlabeled patch triplets from 251,079 locations across the globe, each patch covering 2640m x 2640m and including 4 seasonal time stamps.
Github:
https://github.com/zhu-xlab/ssl4eo-s12
Paper:
https://arxiv.org/abs/2211.07044v1
Dataset:
https://mediatum.ub.tum.de/1660427
@computer_science_and_programming
π147π6
Automatically find and fix errors in any ML datasets with cleanlab
This data-centric AI package facilitates machine learning with messy, real-world data by providing clean labels during training.
Github:
https://github.com/cleanlab/cleanlab
Docs:
https://docs.cleanlab.ai/stable/index.html
Examples:
https://github.com/cleanlab/examples
Paper:
https://arxiv.org/abs/2211.13895v1
π @computer_science_and_programming
This data-centric AI package facilitates machine learning with messy, real-world data by providing clean labels during training.
Github:
https://github.com/cleanlab/cleanlab
Docs:
https://docs.cleanlab.ai/stable/index.html
Examples:
https://github.com/cleanlab/examples
Paper:
https://arxiv.org/abs/2211.13895v1
π @computer_science_and_programming
GitHub
GitHub - cleanlab/cleanlab: Cleanlab's open-source library is the standard data-centric AI package for data quality and machineβ¦
Cleanlab's open-source library is the standard data-centric AI package for data quality and machine learning with messy, real-world data and labels. - cleanlab/cleanlab
π178π5
DiffusionInst: Diffusion Model for Instance Segmentation
* DiffusionInst is the first work of diffusion model for instance segmentation
Github:
https://github.com/chenhaoxing/DiffusionInst
Paper:
https://arxiv.org/abs/2212.02773v2
Getting started:
https://github.com/chenhaoxing/DiffusionInst/blob/main/GETTING_STARTED.md
Dataset:
https://paperswithcode.com/dataset/lvis
@computer_science_and_programming
* DiffusionInst is the first work of diffusion model for instance segmentation
Github:
https://github.com/chenhaoxing/DiffusionInst
Paper:
https://arxiv.org/abs/2212.02773v2
Getting started:
https://github.com/chenhaoxing/DiffusionInst/blob/main/GETTING_STARTED.md
Dataset:
https://paperswithcode.com/dataset/lvis
@computer_science_and_programming
π131π3
This media is not supported in your browser
VIEW IN TELEGRAM
DeepLSD: Line Segment Detection and Refinement with Deep Image Gradients
DeepLSD is a generic line detector that combines the robustness of deep learning with the accuracy of handcrafted detectors. It can be used to extract generic line segments from images in-the-wild, and is suitable for any task requiring high precision, such as homography estimation, visual localization, and 3D reconstruction. By predicting a line distance and angle fields, it can furthermore refine any existing line segments through an optimization
Paper:
https://arxiv.org/abs/2212.07766v1
Github:
https://github.com/cvg/deeplsd
Dataset:
https://paperswithcode.com/dataset/hpatches
@computer_science_and_programming
DeepLSD is a generic line detector that combines the robustness of deep learning with the accuracy of handcrafted detectors. It can be used to extract generic line segments from images in-the-wild, and is suitable for any task requiring high precision, such as homography estimation, visual localization, and 3D reconstruction. By predicting a line distance and angle fields, it can furthermore refine any existing line segments through an optimization
Paper:
https://arxiv.org/abs/2212.07766v1
Github:
https://github.com/cvg/deeplsd
Dataset:
https://paperswithcode.com/dataset/hpatches
@computer_science_and_programming
π160