Pro Serverless Data Handling with Mic.pdf
10.6 MB
Pro Serverless Data Handling with Microsoft Azure
Benjamin Kettner, 2022
Benjamin Kettner, 2022
❤3
🏟 Here is a complete roadmap to learn Data Structures and Algorithms (DSA) 🏟
1. Basics of Programming: Start by learning the basics of a programming language like Python, Java, or C++. Understand concepts like variables, loops, functions, and arrays.
2. Data Structures: Study fundamental data structures like arrays, linked lists, stacks, queues, trees, graphs, and hash tables. Understand the operations that can be performed on these data structures and their time complexities.
3. Algorithms: Learn common algorithms like searching, sorting, recursion, dynamic programming, greedy algorithms, and divide and conquer. Understand how these algorithms work and their time complexities.
4. Problem Solving: Practice solving coding problems on platforms like LeetCode, HackerRank, or Codeforces. Start with easy problems and gradually move to medium and hard problems.
5. Complexity Analysis: Learn how to analyze the time and space complexity of algorithms. Understand Big O notation and how to calculate the complexity of different algorithms.
6. Advanced Data Structures: Study advanced data structures like AVL trees, B-trees, tries, segment trees, and fenwick trees. Understand when and how to use these data structures in problem-solving.
7. Graph Algorithms: Learn graph traversal algorithms like BFS and DFS. Study algorithms like Dijkstra's algorithm, Bellman-Ford algorithm, and Floyd-Warshall algorithm for shortest path problems.
8. Dynamic Programming: Master dynamic programming techniques for solving complex problems efficiently. Practice solving dynamic programming problems to build your skills.
9. Practice and Review: Regularly practice coding problems and review your solutions. Analyze your mistakes and learn from them to improve your problem-solving skills.
10. Mock Interviews: Prepare for technical interviews by participating in mock interviews and solving interview-style coding problems. Practice explaining your thought process and reasoning behind your solutions.
Best DSA RESOURCES: https://topmate.io/coding/886874
All the best 👍👍
1. Basics of Programming: Start by learning the basics of a programming language like Python, Java, or C++. Understand concepts like variables, loops, functions, and arrays.
2. Data Structures: Study fundamental data structures like arrays, linked lists, stacks, queues, trees, graphs, and hash tables. Understand the operations that can be performed on these data structures and their time complexities.
3. Algorithms: Learn common algorithms like searching, sorting, recursion, dynamic programming, greedy algorithms, and divide and conquer. Understand how these algorithms work and their time complexities.
4. Problem Solving: Practice solving coding problems on platforms like LeetCode, HackerRank, or Codeforces. Start with easy problems and gradually move to medium and hard problems.
5. Complexity Analysis: Learn how to analyze the time and space complexity of algorithms. Understand Big O notation and how to calculate the complexity of different algorithms.
6. Advanced Data Structures: Study advanced data structures like AVL trees, B-trees, tries, segment trees, and fenwick trees. Understand when and how to use these data structures in problem-solving.
7. Graph Algorithms: Learn graph traversal algorithms like BFS and DFS. Study algorithms like Dijkstra's algorithm, Bellman-Ford algorithm, and Floyd-Warshall algorithm for shortest path problems.
8. Dynamic Programming: Master dynamic programming techniques for solving complex problems efficiently. Practice solving dynamic programming problems to build your skills.
9. Practice and Review: Regularly practice coding problems and review your solutions. Analyze your mistakes and learn from them to improve your problem-solving skills.
10. Mock Interviews: Prepare for technical interviews by participating in mock interviews and solving interview-style coding problems. Practice explaining your thought process and reasoning behind your solutions.
Best DSA RESOURCES: https://topmate.io/coding/886874
All the best 👍👍
❤3
‼️ USEFUL SITES TO MAKE YOUR WORK EASIER ‼️
1. Media.io – Online Free File Converter, Editor, Compressor
2. https://alternativeto.net/ - Lacks of softwares
3. https://geektyper.com/mobile/ - Pretend to be a hacker
4. http://Leetcode.com/ - Practice your coding skills
5. https://www.privacytools.io/ - Amazing site for privacy tools
6. http://Rainymood.com/ - Amazing site for Rainy & Thunderstorm sounds (to listen while sleeping)
🔔Unmute Notification & Share Channel For More Content ✅
1. Media.io – Online Free File Converter, Editor, Compressor
2. https://alternativeto.net/ - Lacks of softwares
3. https://geektyper.com/mobile/ - Pretend to be a hacker
4. http://Leetcode.com/ - Practice your coding skills
5. https://www.privacytools.io/ - Amazing site for privacy tools
6. http://Rainymood.com/ - Amazing site for Rainy & Thunderstorm sounds (to listen while sleeping)
🔔Unmute Notification & Share Channel For More Content ✅
❤4
Coding is just like the language we use to talk to computers. It's not the skill itself, but rather how do I innovate? How do I build something interesting for my end users?
In a recently leaked recording, AWS CEO told employees that most developers could stop coding once AI takes over, predicting this is likely to happen within 24 months.
Instead of AI replacing developers or expecting a decline in this role, I believe he meant that responsibilities of software developers would be changed significantly by AI.
Being a developer in 2025 may be different from what it was in 2020, Garman, the CEO added.
Meanwhile, Amazon's AI assistant has saved the company $260M & 4,500 developer years of work by remarkably cutting down software upgrade times.
Amazon CEO also confirmed that developers shipped 79% of AI-generated code reviews without changes.
I guess with all the uncertainty, one thing is clear: Ability to quickly adjust and collaborate with AI will be important soft skills more than ever in the of AI.
In a recently leaked recording, AWS CEO told employees that most developers could stop coding once AI takes over, predicting this is likely to happen within 24 months.
Instead of AI replacing developers or expecting a decline in this role, I believe he meant that responsibilities of software developers would be changed significantly by AI.
Being a developer in 2025 may be different from what it was in 2020, Garman, the CEO added.
Meanwhile, Amazon's AI assistant has saved the company $260M & 4,500 developer years of work by remarkably cutting down software upgrade times.
Amazon CEO also confirmed that developers shipped 79% of AI-generated code reviews without changes.
I guess with all the uncertainty, one thing is clear: Ability to quickly adjust and collaborate with AI will be important soft skills more than ever in the of AI.
❤5👍1
5 Handy Tips to master Data Science ⬇️
1️⃣ Begin with introductory projects that cover the fundamental concepts of data science, such as data exploration, cleaning, and visualization. These projects will help you get familiar with common data science tools and libraries like Python (Pandas, NumPy, Matplotlib), R, SQL, and Excel
2️⃣ Look for publicly available datasets from sources like Kaggle, UCI Machine Learning Repository. Working with real-world data will expose you to the challenges of messy, incomplete, and heterogeneous data, which is common in practical scenarios.
3️⃣ Explore various data science techniques like regression, classification, clustering, and time series analysis. Apply these techniques to different datasets and domains to gain a broader understanding of their strengths, weaknesses, and appropriate use cases.
4️⃣ Work on projects that involve the entire data science lifecycle, from data collection and cleaning to model building, evaluation, and deployment. This will help you understand how different components of the data science process fit together.
5️⃣ Consistent practice is key to mastering any skill. Set aside dedicated time to work on data science projects, and gradually increase the complexity and scope of your projects as you gain more experience.
1️⃣ Begin with introductory projects that cover the fundamental concepts of data science, such as data exploration, cleaning, and visualization. These projects will help you get familiar with common data science tools and libraries like Python (Pandas, NumPy, Matplotlib), R, SQL, and Excel
2️⃣ Look for publicly available datasets from sources like Kaggle, UCI Machine Learning Repository. Working with real-world data will expose you to the challenges of messy, incomplete, and heterogeneous data, which is common in practical scenarios.
3️⃣ Explore various data science techniques like regression, classification, clustering, and time series analysis. Apply these techniques to different datasets and domains to gain a broader understanding of their strengths, weaknesses, and appropriate use cases.
4️⃣ Work on projects that involve the entire data science lifecycle, from data collection and cleaning to model building, evaluation, and deployment. This will help you understand how different components of the data science process fit together.
5️⃣ Consistent practice is key to mastering any skill. Set aside dedicated time to work on data science projects, and gradually increase the complexity and scope of your projects as you gain more experience.
❤7