Coding & Data Science Resources
30.2K subscribers
323 photos
515 files
333 links
Official Telegram Channel for Free Coding & Data Science Resources

Admin: @love_data
Download Telegram
How Coders Can Survive—and Thrive—in a ChatGPT World

Artificial intelligence, particularly generative AI powered by large language models (LLMs), could upend many coders’ livelihoods. But some experts argue that AI won’t replace human programmers—not immediately, at least.

“You will have to worry about people who are using AI replacing you,” says Tanishq Mathew Abraham, a recent Ph.D. in biomedical engineering at the University of California, Davis and the CEO of medical AI research center MedARC.

Here are some tips and techniques for coders to survive and thrive in a generative AI world.

Stick to Basics and Best Practices
While the myriad AI-based coding assistants could help with code completion and code generation, the fundamentals of programming remain: the ability to read and reason about your own and others’ code, and understanding how the code you write fits into a larger system.

Find the Tool That Fits Your Needs
Finding the right AI-based tool is essential. Each tool has its own ways to interact with it, and there are different ways to incorporate each tool into your development workflow—whether that’s automating the creation of unit tests, generating test data, or writing documentation.

Clear and Precise Conversations Are Crucial
When using AI coding assistants, be detailed about what you need and view it as an iterative process. Abraham proposes writing a comment that explains the code you want so the assistant can generate relevant suggestions that meet your requirements.

Be Critical and Understand the Risks
Software engineers should be critical of the outputs of large language models, as they tend to hallucinate and produce inaccurate or incorrect code. “It’s easy to get stuck in a debugging rabbit hole when blindly using AI-generated code, and subtle bugs can be difficult to spot,” Vaithilingam says.
2
Attention aspiring data engineers! Are you eager to master the skills necessary to excel in the field?
🎯 Look no further, because below is the curated and comprehensive, free Data Engineering course just for you.

🎯With these 21 free courses, you'll be confident to face your interviews being ahead of 90% of your peers in no time.

🎯 Best of all, you'll save thousands of dollars by taking advantage of this amazing opportunity.

1.Master Python: https://lnkd.in/gVEYx-sY
2.Learn SQL: https://lnkd.in/g6FFcsfr
3.Learn MySQL: https://lnkd.in/gZTYeGxe
4.Learn MongoDB: https://lnkd.in/gbVUvE6k
5.Dominate PySpark: https://lnkd.in/g6BM5sJW
6.Learn Bash, Airflow & Kafka: https://lnkd.in/gzbVYesb
7. Learn Git & GitHub: https://lnkd.in/gVNDUNmy
8. Learn CICD basics: https://lnkd.in/gtHCVQpc
09. Decode Data Warehousing: https://lnkd.in/gdRtQtYv
10. Learn DBT: https://lnkd.in/gYTxsezY
11. Learn Data Lakes: https://lnkd.in/grrNGEih
12. Learn DataBricks: https://lnkd.in/guQZztXG
13. Learn Azure Databricks: https://lnkd.in/gJmdBtqT
14. Learn Snowflake: https://lnkd.in/gMCmbmQQ
15. Learn Apache NiFi: https://lnkd.in/gcAadUaK
16. Learn Debezium: https://lnkd.in/gSpDcSBH

𝐁𝐨𝐨𝐬𝐭 𝐘𝐨𝐮𝐫 𝐄𝐱𝐩𝐞𝐫𝐭𝐢𝐬𝐞 & 𝐏𝐨𝐫𝐭𝐟𝐨𝐥𝐢𝐨 𝐰𝐢𝐭𝐡 5 𝐌𝐮𝐬𝐭-𝐓𝐫𝐲 𝐏𝐫𝐨𝐣𝐞𝐜𝐭𝐬:

1. Reddit ETL Pipeline : https://lnkd.in/gtcPsXM5
2. Surfline Dashboard - https://lnkd.in/gCrmQniM
3. Finnhub Streaming Data Pipeline - https://lnkd.in/g-4btbbP
4. Audiophile End-To-End ELT Pipeline - https://lnkd.in/g96nqM9t
5. Streamify - https://lnkd.in/gaWX92mE
6🔥1
Andrew Ng's course on ChatGPT Prompt Engineering for Developers, created together with OpenAI, is available now for free!
👇👇
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
🚀 Complete Roadmap to Become a Data Scientist in 5 Months

📅 Week 1-2: Fundamentals
Day 1-3: Introduction to Data Science, its applications, and roles.
Day 4-7: Brush up on Python programming 🐍.
Day 8-10: Learn basic statistics 📊 and probability 🎲.

🔍 Week 3-4: Data Manipulation & Visualization
📝 Day 11-15: Master Pandas for data manipulation.
📈 Day 16-20: Learn Matplotlib & Seaborn for data visualization.

🤖 Week 5-6: Machine Learning Foundations
🔬 Day 21-25: Introduction to scikit-learn.
📊 Day 26-30: Learn Linear & Logistic Regression.

🏗 Week 7-8: Advanced Machine Learning
🌳 Day 31-35: Explore Decision Trees & Random Forests.
📌 Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.

🧠 Week 9-10: Deep Learning
🤖 Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
📸 Day 46-50: Learn CNNs & RNNs for image & text data.

🏛 Week 11-12: Data Engineering
🗄 Day 51-55: Learn SQL & Databases.
🧹 Day 56-60: Data Preprocessing & Cleaning.

📊 Week 13-14: Model Evaluation & Optimization
📏 Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
📉 Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).

🏗 Week 15-16: Big Data & Tools
🐘 Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
☁️ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).

🚀 Week 17-18: Deployment & Production
🛠 Day 81-85: Deploy models using Flask or FastAPI.
📦 Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).

🎯 Week 19-20: Specialization
📝 Day 91-95: Choose NLP or Computer Vision, based on your interest.

🏆 Week 21-22: Projects & Portfolio
📂 Day 96-100: Work on Personal Data Science Projects.

💬 Week 23-24: Soft Skills & Networking
🎤 Day 101-105: Improve Communication & Presentation Skills.
🌐 Day 106-110: Attend Online Meetups & Forums.

🎯 Week 25-26: Interview Preparation
💻 Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
📂 Day 116-120: Review your projects & prepare for discussions.

👨‍💻 Week 27-28: Apply for Jobs
📩 Day 121-125: Start applying for Entry-Level Data Scientist positions.

🎤 Week 29-30: Interviews
📝 Day 126-130: Attend Interviews & Practice Whiteboard Problems.

🔄 Week 31-32: Continuous Learning
📰 Day 131-135: Stay updated with the Latest Data Science Trends.

🏆 Week 33-34: Accepting Offers
📝 Day 136-140: Evaluate job offers & Negotiate Your Salary.

🏢 Week 35-36: Settling In
🎯 Day 141-150: Start your New Data Science Job, adapt & keep learning!

🎉 Enjoy Learning & Build Your Dream Career in Data Science! 🚀🔥
5
Python Detailed Roadmap 🚀

📌 1. Basics
Data Types & Variables
Operators & Expressions
Control Flow (if, loops)

📌 2. Functions & Modules
Defining Functions
Lambda Functions
Importing & Creating Modules

📌 3. File Handling
Reading & Writing Files
Working with CSV & JSON

📌 4. Object-Oriented Programming (OOP)
Classes & Objects
Inheritance & Polymorphism
Encapsulation

📌 5. Exception Handling
Try-Except Blocks
Custom Exceptions

📌 6. Advanced Python Concepts
List & Dictionary Comprehensions
Generators & Iterators
Decorators

📌 7. Essential Libraries
NumPy (Arrays & Computations)
Pandas (Data Analysis)
Matplotlib & Seaborn (Visualization)

📌 8. Web Development & APIs
Web Scraping (BeautifulSoup, Scrapy)
API Integration (Requests)
Flask & Django (Backend Development)

📌 9. Automation & Scripting
Automating Tasks with Python
Working with Selenium & PyAutoGUI

📌 10. Data Science & Machine Learning
Data Cleaning & Preprocessing
Scikit-Learn (ML Algorithms)
TensorFlow & PyTorch (Deep Learning)

📌 11. Projects
Build Real-World Applications
Showcase on GitHub

📌 12. Apply for Jobs
Strengthen Resume & Portfolio
Prepare for Technical Interviews

Like for more ❤️💪
4
🔰 Useful Python Modules
2
Steps to become a data analyst

Learn the Basics of Data Analysis:
Familiarize yourself with foundational concepts in data analysis, statistics, and data visualization. Online courses and textbooks can help.
Free books & other useful data analysis resources - https://t.me/learndataanalysis

Develop Technical Skills:
Gain proficiency in essential tools and technologies such as:

SQL: Learn how to query and manipulate data in relational databases.
Free Resources- @sqlanalyst

Excel: Master data manipulation, basic analysis, and visualization.
Free Resources- @excel_analyst

Data Visualization Tools: Become skilled in tools like Tableau, Power BI, or Python libraries like Matplotlib and Seaborn.
Free Resources- @PowerBI_analyst

Programming: Learn a programming language like Python or R for data analysis and manipulation.
Free Resources- @pythonanalyst

Statistical Packages: Familiarize yourself with packages like Pandas, NumPy, and SciPy (for Python) or ggplot2 (for R).

Hands-On Practice:
Apply your knowledge to real datasets. You can find publicly available datasets on platforms like Kaggle or create your datasets for analysis.

Build a Portfolio:
Create data analysis projects to showcase your skills. Share them on platforms like GitHub, where potential employers can see your work.

Networking:
Attend data-related meetups, conferences, and online communities. Networking can lead to job opportunities and valuable insights.

Data Analysis Projects:
Work on personal or freelance data analysis projects to gain experience and demonstrate your abilities.

Job Search:
Start applying for entry-level data analyst positions or internships. Look for job listings on company websites, job boards, and LinkedIn.
Jobs & Internship opportunities: @getjobss

Prepare for Interviews:
Practice common data analyst interview questions and be ready to discuss your past projects and experiences.

Continual Learning:
The field of data analysis is constantly evolving. Stay updated with new tools, techniques, and industry trends.

Soft Skills:
Develop soft skills like critical thinking, problem-solving, communication, and attention to detail, as they are crucial for data analysts.

Never ever give up:
The journey to becoming a data analyst can be challenging, with complex concepts and technical skills to learn. There may be moments of frustration and self-doubt, but remember that these are normal parts of the learning process. Keep pushing through setbacks, keep learning, and stay committed to your goal.

ENJOY LEARNING 👍👍
2