Python | Machine Learning | Coding | R
64.1K subscribers
1.15K photos
73 videos
146 files
810 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and Rโ€”your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
๐Ÿš€ Comprehensive Tutorial: Build a Folder Monitoring & Intruder Detection System in Python

In this comprehensive, step-by-step tutorial, you will learn how to build a real-time folder monitoring and intruder detection system using Python.

๐Ÿ” Your Goal:
Create a background program that:
- Monitors a specific folder on your computer.
- Instantly captures a photo using the webcam whenever someone opens that folder.
- Saves the photo with a timestamp in a secure folder.
- Runs automatically when Windows starts.
- Keeps running until you manually stop it (e.g., via Task Manager or a hotkey).

Read and get code: https://hackmd.io/@husseinsheikho/Build-a-Folder-Monitoring

#Python #Security #FolderMonitoring #IntruderDetection #OpenCV #FaceCapture #Automation #Windows #TaskScheduler #ComputerVision


โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7๐Ÿ”ฅ1๐ŸŽ‰1
๐Ÿš€ Comprehensive Guide: How to Prepare for an Image Processing Job Interview โ€“ 500 Most Common Interview Questions

Let's start: https://hackmd.io/@husseinsheikho/IP

#ImageProcessing #ComputerVision #OpenCV #Python #InterviewPrep #DigitalImageProcessing #MachineLearning #AI #SignalProcessing #ComputerGraphics

โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4๐Ÿ‘Ž1๐Ÿ”ฅ1
A useful find on GitHub CheatSheets-for-Developers

LINK: https://github.com/crescentpartha/CheatSheets-for-Developers

This is a huge collection of cheat sheets for a wide variety of technologies:

JavaScript, Python, Git, Docker, SQL, Linux, Regex, and many others.


Conveniently structured โ€” you can quickly find the topic you need.

Save it and use it ๐Ÿ”ฅ

๐Ÿ‘‰ @DATASCIENCEN
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2๐Ÿ‘2
5 minutes of work - 127,000$ profit!

Opened access to the Jay Welcome Club where the AI bot does all the work itself๐Ÿ’ป

Usually you pay crazy money to get into this club, but today access is free for everyone!

23,432% on deposit earned by club members in the last 6 months๐Ÿ“ˆ

Just follow Jay's trades and earn! ๐Ÿ‘‡

https://t.me/+mONXtEgVxtU5NmZl
โค3
๐Ÿš€ Comprehensive Guide: How to Prepare for a Graph Neural Networks (GNN) Job Interview โ€“ 350 Most Common Interview Questions

Read: https://hackmd.io/@husseinsheikho/GNN-interview

#GNN #GraphNeuralNetworks #MachineLearning #DeepLearning #AI #DataScience #PyTorchGeometric #DGL #NodeClassification #LinkPrediction #GraphML

โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
โค7
This repo is awesome. It features RAG, AI Agents, Multi-agent Teams, MCP, Voice Agents, and more.

โœ… link: https://github.com/Shubhamsaboo/awesome-llm-apps

#RAG #AIAgents #MultiAgentSystems #VoiceAI #LLMApps


โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
1โค5๐Ÿ”ฅ5๐Ÿ‘1
500 Essential Web Scraping Interview Questions

Start: https://hackmd.io/@husseinsheikho/WS-Interview

โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4๐Ÿ‘4
This media is not supported in your browser
VIEW IN TELEGRAM
This repository contains a collection of everything needed to work with libraries related to AI and LLM.

More than 120 libraries, sorted by stages of LLM development:

โ†’ Training, fine-tuning, and evaluation of LLM models
โ†’ Integration and deployment of applications with LLM and RAG
โ†’ Fast and scalable model launching
โ†’ Working with data: extraction, structuring, and synthetic generation
โ†’ Creating autonomous agents based on LLM
โ†’ Prompt optimization and ensuring safe use in production

๐ŸŒŸ link: https://github.com/Shubhamsaboo/awesome-llm-apps

๐Ÿ‘‰ @codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6๐Ÿ’ฏ3
This media is not supported in your browser
VIEW IN TELEGRAM
๐Ÿฅ‡ This repo is like gold for every data scientist!

โœ… Just open your browser; a ton of interactive exercises and real experiences await you. Any question about statistics, probability, Python, or machine learning, you'll get the answer right there! With code, charts, even animations. This way, you don't waste time, and what you learn really sticks in your mind!

โฌ…๏ธ Data science statistics and probability topics
โฌ…๏ธ Clustering
โฌ…๏ธ Principal Component Analysis (PCA)
โฌ…๏ธ Bagging and Boosting techniques
โฌ…๏ธ Linear regression
โฌ…๏ธ Neural networks and more...


โ”Œ ๐Ÿ“‚ Int Data Science Python Dash
โ””
๐Ÿฑ GitHub-Repos

๐Ÿ‘‰ @codeprogrammer

#Python #OpenCV #Automation #ML #AI #DEEPLEARNING #MACHINELEARNING #ComputerVision
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7๐Ÿ‘4๐Ÿ’ฏ1๐Ÿ†1
This media is not supported in your browser
VIEW IN TELEGRAM
Want to learn Python quickly and from scratch? Then hereโ€™s what you need โ€” CodeEasy: Python Essentials

๐Ÿ”นExplains complex things in simple words
๐Ÿ”นBased on a real story with tasks throughout the plot
๐Ÿ”นFree start

Ready to begin? Click https://codeeasy.io/course/python-essentials ๐ŸŒŸ

๐Ÿ‘‰ @DataScience4
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
Must watch "AI Engineer YouTube Playlist"

1. Neural Networks Zero to Hero (Karpathy) - https://lnkd.in/gBVSQqFf

2. Language Modelling from Scratch (Stanford CS336 2025) - https://lnkd.in/guuhQ8gA

3. Introduction to Deep Learning (MIT 6.S191 2025) - https://lnkd.in/ggBB_aCm

4. Introduction to Transformers (Talk - Andrej Karpathy) - https://lnkd.in/gYMTVVmH

5. Building LLMs (Stanford CS229 Guest Lecture) - https://lnkd.in/gP9xqXxi

6. Deep Dive into LLMs like ChatGPT - https://lnkd.in/gtZ9BAdA

7. Letโ€™s Build GPT from Scratch - https://lnkd.in/gdNj7_Tw

8. Agentic AI by Stanford - https://lnkd.in/gknxmPQG

9. Transformers and Self-Attention - https://lnkd.in/gvZZtciU

https://t.me/CodeProgrammer โœˆ๏ธ
Please open Telegram to view this post
VIEW IN TELEGRAM
โค9๐Ÿ‘1
DS INTERVIEW.pdf
16.6 MB
800+ Data Science Interview Questions โ€“ A Must-Have Resource for Every Aspirant

Breaking into the data science field is challengingโ€”not because of a lack of opportunities, but because of how thoroughly you need to prepare.

This document, curated by Steve Nouri, is a goldmine of 800+ real-world interview questions covering:
-Statistics
-Data Science Fundamentals
-Data Analysis
-Machine Learning
-Deep Learning
-Python & R
-Model Evaluation & Optimization
-Deployment Strategies
โ€ฆand much more!

https://t.me/CodeProgrammer ๐Ÿ”ฐ
Please open Telegram to view this post
VIEW IN TELEGRAM
โค11๐Ÿ‘2
Top 140 PyTorch Interview Questions and Answers

This comprehensive guide covers essential PyTorch interview questions across multiple categories, with detailed explanations for each.these 140 carefully curated questions represent the most important concepts you'll encounter in #PyTorch interviews.

๐Ÿง  Link: https://hackmd.io/@husseinsheikho/pytorch-interview

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค10
โ€œLearn AIโ€ is everywhere. But where do the builders actually start?
Hereโ€™s the real path, the courses, papers and repos that matter.


โœ… Videos:

Everything here โ‡’ https://lnkd.in/ePfB8_rk

โžก๏ธ LLM Introduction โ†’ https://lnkd.in/ernZFpvB
โžก๏ธ LLMs from Scratch - Stanford CS229 โ†’ https://lnkd.in/etUh6_mn
โžก๏ธ Agentic AI Overview โ†’https://lnkd.in/ecpmzAyq
โžก๏ธ Building and Evaluating Agents โ†’ https://lnkd.in/e5KFeZGW
โžก๏ธ Building Effective Agents โ†’ https://lnkd.in/eqxvBg79
โžก๏ธ Building Agents with MCP โ†’ https://lnkd.in/eZd2ym2K
โžก๏ธ Building an Agent from Scratch โ†’ https://lnkd.in/eiZahJGn

โœ… Courses:

All Courses here โ‡’ https://lnkd.in/eKKs9ves

โžก๏ธ HuggingFace's Agent Course โ†’ https://lnkd.in/e7dUTYuE
โžก๏ธ MCP with Anthropic โ†’ https://lnkd.in/eMEnkCPP
โžก๏ธ Building Vector DB with Pinecone โ†’ https://lnkd.in/eP2tMGVs
โžก๏ธ Vector DB from Embeddings to Apps โ†’ https://lnkd.in/eP2tMGVs
โžก๏ธ Agent Memory โ†’ https://lnkd.in/egC8h9_Z
โžก๏ธ Building and Evaluating RAG apps โ†’ https://lnkd.in/ewy3sApa
โžก๏ธ Building Browser Agents โ†’ https://lnkd.in/ewy3sApa
โžก๏ธ LLMOps โ†’ https://lnkd.in/ex4xnE8t
โžก๏ธ Evaluating AI Agents โ†’ https://lnkd.in/eBkTNTGW
โžก๏ธ Computer Use with Anthropic โ†’ https://lnkd.in/ebHUc-ZU
โžก๏ธ Multi-Agent Use โ†’ https://lnkd.in/e4f4HtkR
โžก๏ธ Improving LLM Accuracy โ†’ https://lnkd.in/eVUXGT4M
โžก๏ธ Agent Design Patterns โ†’ https://lnkd.in/euhUq3W9
โžก๏ธ Multi Agent Systems โ†’ https://lnkd.in/evBnavk9

โœ… Guides:

Access all โ‡’ https://lnkd.in/e-GA-HRh

โžก๏ธ Google's Agent โ†’ https://lnkd.in/encAzwKf
โžก๏ธ Google's Agent Companion โ†’ https://lnkd.in/e3-XtYKg
โžก๏ธ Building Effective Agents by Anthropic โ†’ https://lnkd.in/egifJ_wJ
โžก๏ธ Claude Code Best practices โ†’ https://lnkd.in/eJnqfQju
โžก๏ธ OpenAI's Practical Guide to Building Agents โ†’ https://lnkd.in/e-GA-HRh

โœ… Repos:
โžก๏ธ GenAI Agents โ†’ https://lnkd.in/eAscvs_i
โžก๏ธ Microsoft's AI Agents for Beginners โ†’ https://lnkd.in/d59MVgic
โžก๏ธ Prompt Engineering Guide โ†’ https://lnkd.in/ewsbFwrP
โžก๏ธ AI Agent Papers โ†’ https://lnkd.in/esMHrxJX

โœ… Papers:
๐ŸŸก ReAct โ†’ https://lnkd.in/eZ-Z-WFb
๐ŸŸก Generative Agents โ†’ https://lnkd.in/eDAeSEAq
๐ŸŸก Toolformer โ†’ https://lnkd.in/e_Vcz5K9
๐ŸŸก Chain-of-Thought Prompting โ†’ https://lnkd.in/eRCT_Xwq
๐ŸŸก Tree of Thoughts โ†’ https://lnkd.in/eiadYm8S
๐ŸŸก Reflexion โ†’ https://lnkd.in/eggND2rZ
๐ŸŸก Retrieval-Augmented Generation Survey โ†’ https://lnkd.in/eARbqdYE

Access all โ‡’ https://lnkd.in/e-GA-HRh

By: https://t.me/CodeProgrammer ๐ŸŸก
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5๐Ÿ‘5๐Ÿ’ฏ2๐Ÿ‘จโ€๐Ÿ’ป1๐Ÿ†’1๐Ÿ‘พ1
๐——๐—ฒ๐—ฒ๐—ฝ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด skills.pdf
14.5 MB
Deep Learning roadmap. Now itโ€™s your turn!

๐—ฃ๐—ต๐—ฎ๐˜€๐—ฒ ๐Ÿญ: ๐—ก๐—ฒ๐˜‚๐—ฟ๐—ฎ๐—น ๐—ก๐—ฒ๐˜๐˜„๐—ผ๐—ฟ๐—ธ ๐—™๐—ผ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ (๐—ช๐—ฒ๐—ฒ๐—ธ ๐Ÿญ-๐Ÿฎ)
โ— Understand perceptrons, sigmoid, ReLU, tanh
โ— Learn cost functions, gradient descent, and derivatives
โ— Implement binary logistic regression using NumPy

๐—ฃ๐—ต๐—ฎ๐˜€๐—ฒ ๐Ÿฎ: ๐—ฆ๐—ต๐—ฎ๐—น๐—น๐—ผ๐˜„ ๐—ก๐—ฒ๐˜‚๐—ฟ๐—ฎ๐—น ๐—ก๐—ฒ๐˜๐˜„๐—ผ๐—ฟ๐—ธ๐˜€ (๐—ช๐—ฒ๐—ฒ๐—ธ ๐Ÿฏ-๐Ÿฐ)
โ— Build a neural net with one hidden layer
โ— Compare activation functions (sigmoid vs tanh vs ReLU)
โ— Train your model to classify simple images

๐—ฃ๐—ต๐—ฎ๐˜€๐—ฒ ๐Ÿฏ: ๐——๐—ฒ๐—ฒ๐—ฝ ๐—ก๐—ฒ๐˜‚๐—ฟ๐—ฎ๐—น ๐—ก๐—ฒ๐˜๐˜„๐—ผ๐—ฟ๐—ธ๐˜€ (๐—ช๐—ฒ๐—ฒ๐—ธ ๐Ÿฑ-๐Ÿฒ)
โ— Forward and backward propagation through multiple layers
โ— Parameter initialization and tuning
โ— Implement L-layer neural networks from scratch

๐—ฃ๐—ต๐—ฎ๐˜€๐—ฒ ๐Ÿฐ: ๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป & ๐—ฅ๐—ฒ๐—ด๐˜‚๐—น๐—ฎ๐—ฟ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป (๐—ช๐—ฒ๐—ฒ๐—ธ ๐Ÿณ-๐Ÿด)
โ— Learn mini-batch gradient descent, RMSProp, and Adam
โ— Apply L2 and Dropout regularization to avoid overfitting
โ— Boost your modelโ€™s performance with better convergence

๐—ฃ๐—ต๐—ฎ๐˜€๐—ฒ ๐Ÿฑ: ๐—ง๐—ฒ๐—ป๐˜€๐—ผ๐—ฟ๐—™๐—น๐—ผ๐˜„ & ๐—ฅ๐—ฒ๐—ฎ๐—น ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ (๐—ช๐—ฒ๐—ฒ๐—ธ ๐Ÿต-๐Ÿญ๐Ÿฌ)
โ— Build models using TensorFlow and Keras
โ— Normalize data, tune hyperparameters, and visualize metrics
โ— Create multi-class classifiers using softmax

๐—ฃ๐—ต๐—ฎ๐˜€๐—ฒ ๐Ÿฒ: ๐—ฅ๐—ฒ๐—ฎ๐—น-๐—ช๐—ผ๐—ฟ๐—น๐—ฑ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ & ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ฃ๐—ฟ๐—ฒ๐—ฝ (๐—ช๐—ฒ๐—ฒ๐—ธ ๐Ÿญ๐Ÿญ-๐Ÿญ๐Ÿฎ)
โ— Work on image recognition, text classification, and real datasets
โ— Learn model deployment techniques
โ— Prepare for interviews with hands-on projects and GitHub repo

https://t.me/CodeProgrammer โœ‰๏ธ
Please open Telegram to view this post
VIEW IN TELEGRAM
โค9
๐Ÿš€ Model Context Protocol (MCP) Curriculum for Beginners

Learn MCP with Hands-on Code Examples in C#, Java, JavaScript, Python, and TypeScript
๐Ÿง  Overview of the Model Context Protocol Curriculum

The Model Context Protocol (MCP) is an innovative framework designed to standardize communication between AI models and client applications. This open-source curriculum provides a structured learning path, featuring practical coding examples and real-world scenarios across popular programming languages such as C#, Java, JavaScript, TypeScript, and Python.

Whether you're an AI developer, system architect, or software engineer, this guide is your all-in-one resource for mastering MCP fundamentals and implementation techniques.

Resources: https://github.com/microsoft/mcp-for-beginners/blob/main/translations/en/README.md

https://t.me/CodeProgrammer โญ๏ธ
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2๐ŸŽ‰1
This media is not supported in your browser
VIEW IN TELEGRAM
LangExtract

A Python library for extracting structured information from unstructured text using LLMs with precise source grounding and interactive visualization.

GitHub: https://github.com/google/langextract

https://t.me/DataScienceN ๐Ÿ–•
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3
This media is not supported in your browser
VIEW IN TELEGRAM
I recommend you to join @TradingNewsIO for Global & Economic News 24/7
โšก๏ธStay up-to-date with real-time updates on global events.
โžก๏ธ Click Here and JOIN NOW !

#ุฅุนู„ุงู† InsideAds
โค2