๐๐ฒ๐ฒ๐ฝ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด skills.pdf
14.5 MB
Deep Learning roadmap. Now itโs your turn!
๐ฃ๐ต๐ฎ๐๐ฒ ๐ญ: ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ ๐๐ผ๐๐ป๐ฑ๐ฎ๐๐ถ๐ผ๐ป๐ (๐ช๐ฒ๐ฒ๐ธ ๐ญ-๐ฎ)
โ Understand perceptrons, sigmoid, ReLU, tanh
โ Learn cost functions, gradient descent, and derivatives
โ Implement binary logistic regression using NumPy
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฎ: ๐ฆ๐ต๐ฎ๐น๐น๐ผ๐ ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐ (๐ช๐ฒ๐ฒ๐ธ ๐ฏ-๐ฐ)
โ Build a neural net with one hidden layer
โ Compare activation functions (sigmoid vs tanh vs ReLU)
โ Train your model to classify simple images
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฏ: ๐๐ฒ๐ฒ๐ฝ ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐ (๐ช๐ฒ๐ฒ๐ธ ๐ฑ-๐ฒ)
โ Forward and backward propagation through multiple layers
โ Parameter initialization and tuning
โ Implement L-layer neural networks from scratch
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฐ: ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป & ๐ฅ๐ฒ๐ด๐๐น๐ฎ๐ฟ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป (๐ช๐ฒ๐ฒ๐ธ ๐ณ-๐ด)
โ Learn mini-batch gradient descent, RMSProp, and Adam
โ Apply L2 and Dropout regularization to avoid overfitting
โ Boost your modelโs performance with better convergence
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฑ: ๐ง๐ฒ๐ป๐๐ผ๐ฟ๐๐น๐ผ๐ & ๐ฅ๐ฒ๐ฎ๐น ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ (๐ช๐ฒ๐ฒ๐ธ ๐ต-๐ญ๐ฌ)
โ Build models using TensorFlow and Keras
โ Normalize data, tune hyperparameters, and visualize metrics
โ Create multi-class classifiers using softmax
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฒ: ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ & ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ฃ๐ฟ๐ฒ๐ฝ (๐ช๐ฒ๐ฒ๐ธ ๐ญ๐ญ-๐ญ๐ฎ)
โ Work on image recognition, text classification, and real datasets
โ Learn model deployment techniques
โ Prepare for interviews with hands-on projects and GitHub repo
https://t.me/CodeProgrammerโ๏ธ
๐ฃ๐ต๐ฎ๐๐ฒ ๐ญ: ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ ๐๐ผ๐๐ป๐ฑ๐ฎ๐๐ถ๐ผ๐ป๐ (๐ช๐ฒ๐ฒ๐ธ ๐ญ-๐ฎ)
โ Understand perceptrons, sigmoid, ReLU, tanh
โ Learn cost functions, gradient descent, and derivatives
โ Implement binary logistic regression using NumPy
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฎ: ๐ฆ๐ต๐ฎ๐น๐น๐ผ๐ ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐ (๐ช๐ฒ๐ฒ๐ธ ๐ฏ-๐ฐ)
โ Build a neural net with one hidden layer
โ Compare activation functions (sigmoid vs tanh vs ReLU)
โ Train your model to classify simple images
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฏ: ๐๐ฒ๐ฒ๐ฝ ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐ (๐ช๐ฒ๐ฒ๐ธ ๐ฑ-๐ฒ)
โ Forward and backward propagation through multiple layers
โ Parameter initialization and tuning
โ Implement L-layer neural networks from scratch
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฐ: ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป & ๐ฅ๐ฒ๐ด๐๐น๐ฎ๐ฟ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป (๐ช๐ฒ๐ฒ๐ธ ๐ณ-๐ด)
โ Learn mini-batch gradient descent, RMSProp, and Adam
โ Apply L2 and Dropout regularization to avoid overfitting
โ Boost your modelโs performance with better convergence
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฑ: ๐ง๐ฒ๐ป๐๐ผ๐ฟ๐๐น๐ผ๐ & ๐ฅ๐ฒ๐ฎ๐น ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ (๐ช๐ฒ๐ฒ๐ธ ๐ต-๐ญ๐ฌ)
โ Build models using TensorFlow and Keras
โ Normalize data, tune hyperparameters, and visualize metrics
โ Create multi-class classifiers using softmax
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฒ: ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ & ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ฃ๐ฟ๐ฒ๐ฝ (๐ช๐ฒ๐ฒ๐ธ ๐ญ๐ญ-๐ญ๐ฎ)
โ Work on image recognition, text classification, and real datasets
โ Learn model deployment techniques
โ Prepare for interviews with hands-on projects and GitHub repo
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค9
https://t.me/InsideAds_bot/open?startapp=r_148350890_utm_source-insideadsInternal-utm_medium-notification-utm_campaign-referralRegistered
if you have channel , make money by using this ads paltform
easy and auto ads posting ( profit: 100$ monthly per channel)
if you have channel , make money by using this ads paltform
easy and auto ads posting ( profit: 100$ monthly per channel)
Telegram
Inside Ads
Smart tool for growth and monetisation of Telegram channels.
Attract subscribers and earn money on your channel (from 100 subscribers). AI will select platforms, advertisers and create ads automatically
Attract subscribers and earn money on your channel (from 100 subscribers). AI will select platforms, advertisers and create ads automatically
๐1
๐ Model Context Protocol (MCP) Curriculum for Beginners
Learn MCP with Hands-on Code Examples in C#, Java, JavaScript, Python, and TypeScript
๐ง Overview of the Model Context Protocol Curriculum
The Model Context Protocol (MCP) is an innovative framework designed to standardize communication between AI models and client applications. This open-source curriculum provides a structured learning path, featuring practical coding examples and real-world scenarios across popular programming languages such as C#, Java, JavaScript, TypeScript, and Python.
Whether you're an AI developer, system architect, or software engineer, this guide is your all-in-one resource for mastering MCP fundamentals and implementation techniques.
Resources: https://github.com/microsoft/mcp-for-beginners/blob/main/translations/en/README.md
https://t.me/CodeProgrammerโญ๏ธ
Learn MCP with Hands-on Code Examples in C#, Java, JavaScript, Python, and TypeScript
๐ง Overview of the Model Context Protocol Curriculum
The Model Context Protocol (MCP) is an innovative framework designed to standardize communication between AI models and client applications. This open-source curriculum provides a structured learning path, featuring practical coding examples and real-world scenarios across popular programming languages such as C#, Java, JavaScript, TypeScript, and Python.
Whether you're an AI developer, system architect, or software engineer, this guide is your all-in-one resource for mastering MCP fundamentals and implementation techniques.
Resources: https://github.com/microsoft/mcp-for-beginners/blob/main/translations/en/README.md
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2๐1
Join our paid channel, content and rare resources for learning, mastering artificial intelligence, data analysis, Python and other resources that you will only find in our channels
https://t.me/+r_Tcx2c-oVU1OWNi
this link for only 7 members
https://t.me/+r_Tcx2c-oVU1OWNi
this link for only 7 members
Telegram
Data Science Premium (Books & Courses)
access to thousands of valuable resources, including essential books and courses.
Paid books
Paid courses from coursera and Udemy
Paid project
Paid books
Paid courses from coursera and Udemy
Paid project
โค2
This media is not supported in your browser
VIEW IN TELEGRAM
LangExtract
A Python library for extracting structured information from unstructured text using LLMs with precise source grounding and interactive visualization.
GitHub: https://github.com/google/langextract
https://t.me/DataScienceN๐
A Python library for extracting structured information from unstructured text using LLMs with precise source grounding and interactive visualization.
GitHub: https://github.com/google/langextract
https://t.me/DataScienceN
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2
This media is not supported in your browser
VIEW IN TELEGRAM
I recommend you to join @TradingNewsIO for Global & Economic News 24/7
โก๏ธStay up-to-date with real-time updates on global events.
โก๏ธ Click Here and JOIN NOW !
#ุฅุนูุงู InsideAds
โก๏ธStay up-to-date with real-time updates on global events.
โก๏ธ Click Here and JOIN NOW !
#ุฅุนูุงู InsideAds
โค2