Top 140 PyTorch Interview Questions and Answers
This comprehensive guide covers essential PyTorch interview questions across multiple categories, with detailed explanations for each.these 140 carefully curated questions represent the most important concepts you'll encounter in #PyTorch interviews.
๐ง Link: https://hackmd.io/@husseinsheikho/pytorch-interview
https://t.me/CodeProgrammer
This comprehensive guide covers essential PyTorch interview questions across multiple categories, with detailed explanations for each.these 140 carefully curated questions represent the most important concepts you'll encounter in #PyTorch interviews.
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค10
โLearn AIโ is everywhere. But where do the builders actually start?
Hereโs the real path, the courses, papers and repos that matter.
โ
Videos:
Everything here โ https://lnkd.in/ePfB8_rk
โก๏ธ LLM Introduction โ https://lnkd.in/ernZFpvB
โก๏ธ LLMs from Scratch - Stanford CS229 โ https://lnkd.in/etUh6_mn
โก๏ธ Agentic AI Overview โhttps://lnkd.in/ecpmzAyq
โก๏ธ Building and Evaluating Agents โ https://lnkd.in/e5KFeZGW
โก๏ธ Building Effective Agents โ https://lnkd.in/eqxvBg79
โก๏ธ Building Agents with MCP โ https://lnkd.in/eZd2ym2K
โก๏ธ Building an Agent from Scratch โ https://lnkd.in/eiZahJGn
โ
Courses:
All Courses here โ https://lnkd.in/eKKs9ves
โก๏ธ HuggingFace's Agent Course โ https://lnkd.in/e7dUTYuE
โก๏ธ MCP with Anthropic โ https://lnkd.in/eMEnkCPP
โก๏ธ Building Vector DB with Pinecone โ https://lnkd.in/eP2tMGVs
โก๏ธ Vector DB from Embeddings to Apps โ https://lnkd.in/eP2tMGVs
โก๏ธ Agent Memory โ https://lnkd.in/egC8h9_Z
โก๏ธ Building and Evaluating RAG apps โ https://lnkd.in/ewy3sApa
โก๏ธ Building Browser Agents โ https://lnkd.in/ewy3sApa
โก๏ธ LLMOps โ https://lnkd.in/ex4xnE8t
โก๏ธ Evaluating AI Agents โ https://lnkd.in/eBkTNTGW
โก๏ธ Computer Use with Anthropic โ https://lnkd.in/ebHUc-ZU
โก๏ธ Multi-Agent Use โ https://lnkd.in/e4f4HtkR
โก๏ธ Improving LLM Accuracy โ https://lnkd.in/eVUXGT4M
โก๏ธ Agent Design Patterns โ https://lnkd.in/euhUq3W9
โก๏ธ Multi Agent Systems โ https://lnkd.in/evBnavk9
โ
Guides:
Access all โ https://lnkd.in/e-GA-HRh
โก๏ธ Google's Agent โ https://lnkd.in/encAzwKf
โก๏ธ Google's Agent Companion โ https://lnkd.in/e3-XtYKg
โก๏ธ Building Effective Agents by Anthropic โ https://lnkd.in/egifJ_wJ
โก๏ธ Claude Code Best practices โ https://lnkd.in/eJnqfQju
โก๏ธ OpenAI's Practical Guide to Building Agents โ https://lnkd.in/e-GA-HRh
โ
Repos:
โก๏ธ GenAI Agents โ https://lnkd.in/eAscvs_i
โก๏ธ Microsoft's AI Agents for Beginners โ https://lnkd.in/d59MVgic
โก๏ธ Prompt Engineering Guide โ https://lnkd.in/ewsbFwrP
โก๏ธ AI Agent Papers โ https://lnkd.in/esMHrxJX
โ
Papers:
๐ก ReAct โ https://lnkd.in/eZ-Z-WFb
๐ก Generative Agents โ https://lnkd.in/eDAeSEAq
๐ก Toolformer โ https://lnkd.in/e_Vcz5K9
๐ก Chain-of-Thought Prompting โ https://lnkd.in/eRCT_Xwq
๐ก Tree of Thoughts โ https://lnkd.in/eiadYm8S
๐ก Reflexion โ https://lnkd.in/eggND2rZ
๐ก Retrieval-Augmented Generation Survey โ https://lnkd.in/eARbqdYE
Access all โ https://lnkd.in/e-GA-HRh
By: https://t.me/CodeProgrammer๐ก
Hereโs the real path, the courses, papers and repos that matter.
Everything here โ https://lnkd.in/ePfB8_rk
All Courses here โ https://lnkd.in/eKKs9ves
Access all โ https://lnkd.in/e-GA-HRh
Access all โ https://lnkd.in/e-GA-HRh
By: https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5๐5๐ฏ2๐จโ๐ป1๐1๐พ1
๐๐ฒ๐ฒ๐ฝ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด skills.pdf
14.5 MB
Deep Learning roadmap. Now itโs your turn!
๐ฃ๐ต๐ฎ๐๐ฒ ๐ญ: ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ ๐๐ผ๐๐ป๐ฑ๐ฎ๐๐ถ๐ผ๐ป๐ (๐ช๐ฒ๐ฒ๐ธ ๐ญ-๐ฎ)
โ Understand perceptrons, sigmoid, ReLU, tanh
โ Learn cost functions, gradient descent, and derivatives
โ Implement binary logistic regression using NumPy
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฎ: ๐ฆ๐ต๐ฎ๐น๐น๐ผ๐ ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐ (๐ช๐ฒ๐ฒ๐ธ ๐ฏ-๐ฐ)
โ Build a neural net with one hidden layer
โ Compare activation functions (sigmoid vs tanh vs ReLU)
โ Train your model to classify simple images
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฏ: ๐๐ฒ๐ฒ๐ฝ ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐ (๐ช๐ฒ๐ฒ๐ธ ๐ฑ-๐ฒ)
โ Forward and backward propagation through multiple layers
โ Parameter initialization and tuning
โ Implement L-layer neural networks from scratch
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฐ: ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป & ๐ฅ๐ฒ๐ด๐๐น๐ฎ๐ฟ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป (๐ช๐ฒ๐ฒ๐ธ ๐ณ-๐ด)
โ Learn mini-batch gradient descent, RMSProp, and Adam
โ Apply L2 and Dropout regularization to avoid overfitting
โ Boost your modelโs performance with better convergence
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฑ: ๐ง๐ฒ๐ป๐๐ผ๐ฟ๐๐น๐ผ๐ & ๐ฅ๐ฒ๐ฎ๐น ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ (๐ช๐ฒ๐ฒ๐ธ ๐ต-๐ญ๐ฌ)
โ Build models using TensorFlow and Keras
โ Normalize data, tune hyperparameters, and visualize metrics
โ Create multi-class classifiers using softmax
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฒ: ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ & ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ฃ๐ฟ๐ฒ๐ฝ (๐ช๐ฒ๐ฒ๐ธ ๐ญ๐ญ-๐ญ๐ฎ)
โ Work on image recognition, text classification, and real datasets
โ Learn model deployment techniques
โ Prepare for interviews with hands-on projects and GitHub repo
https://t.me/CodeProgrammerโ๏ธ
๐ฃ๐ต๐ฎ๐๐ฒ ๐ญ: ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ ๐๐ผ๐๐ป๐ฑ๐ฎ๐๐ถ๐ผ๐ป๐ (๐ช๐ฒ๐ฒ๐ธ ๐ญ-๐ฎ)
โ Understand perceptrons, sigmoid, ReLU, tanh
โ Learn cost functions, gradient descent, and derivatives
โ Implement binary logistic regression using NumPy
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฎ: ๐ฆ๐ต๐ฎ๐น๐น๐ผ๐ ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐ (๐ช๐ฒ๐ฒ๐ธ ๐ฏ-๐ฐ)
โ Build a neural net with one hidden layer
โ Compare activation functions (sigmoid vs tanh vs ReLU)
โ Train your model to classify simple images
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฏ: ๐๐ฒ๐ฒ๐ฝ ๐ก๐ฒ๐๐ฟ๐ฎ๐น ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐ (๐ช๐ฒ๐ฒ๐ธ ๐ฑ-๐ฒ)
โ Forward and backward propagation through multiple layers
โ Parameter initialization and tuning
โ Implement L-layer neural networks from scratch
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฐ: ๐ข๐ฝ๐๐ถ๐บ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป & ๐ฅ๐ฒ๐ด๐๐น๐ฎ๐ฟ๐ถ๐๐ฎ๐๐ถ๐ผ๐ป (๐ช๐ฒ๐ฒ๐ธ ๐ณ-๐ด)
โ Learn mini-batch gradient descent, RMSProp, and Adam
โ Apply L2 and Dropout regularization to avoid overfitting
โ Boost your modelโs performance with better convergence
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฑ: ๐ง๐ฒ๐ป๐๐ผ๐ฟ๐๐น๐ผ๐ & ๐ฅ๐ฒ๐ฎ๐น ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ (๐ช๐ฒ๐ฒ๐ธ ๐ต-๐ญ๐ฌ)
โ Build models using TensorFlow and Keras
โ Normalize data, tune hyperparameters, and visualize metrics
โ Create multi-class classifiers using softmax
๐ฃ๐ต๐ฎ๐๐ฒ ๐ฒ: ๐ฅ๐ฒ๐ฎ๐น-๐ช๐ผ๐ฟ๐น๐ฑ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ & ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ฃ๐ฟ๐ฒ๐ฝ (๐ช๐ฒ๐ฒ๐ธ ๐ญ๐ญ-๐ญ๐ฎ)
โ Work on image recognition, text classification, and real datasets
โ Learn model deployment techniques
โ Prepare for interviews with hands-on projects and GitHub repo
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค9
๐ Model Context Protocol (MCP) Curriculum for Beginners
Learn MCP with Hands-on Code Examples in C#, Java, JavaScript, Python, and TypeScript
๐ง Overview of the Model Context Protocol Curriculum
The Model Context Protocol (MCP) is an innovative framework designed to standardize communication between AI models and client applications. This open-source curriculum provides a structured learning path, featuring practical coding examples and real-world scenarios across popular programming languages such as C#, Java, JavaScript, TypeScript, and Python.
Whether you're an AI developer, system architect, or software engineer, this guide is your all-in-one resource for mastering MCP fundamentals and implementation techniques.
Resources: https://github.com/microsoft/mcp-for-beginners/blob/main/translations/en/README.md
https://t.me/CodeProgrammerโญ๏ธ
Learn MCP with Hands-on Code Examples in C#, Java, JavaScript, Python, and TypeScript
๐ง Overview of the Model Context Protocol Curriculum
The Model Context Protocol (MCP) is an innovative framework designed to standardize communication between AI models and client applications. This open-source curriculum provides a structured learning path, featuring practical coding examples and real-world scenarios across popular programming languages such as C#, Java, JavaScript, TypeScript, and Python.
Whether you're an AI developer, system architect, or software engineer, this guide is your all-in-one resource for mastering MCP fundamentals and implementation techniques.
Resources: https://github.com/microsoft/mcp-for-beginners/blob/main/translations/en/README.md
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2๐1
This media is not supported in your browser
VIEW IN TELEGRAM
LangExtract
A Python library for extracting structured information from unstructured text using LLMs with precise source grounding and interactive visualization.
GitHub: https://github.com/google/langextract
https://t.me/DataScienceN๐
A Python library for extracting structured information from unstructured text using LLMs with precise source grounding and interactive visualization.
GitHub: https://github.com/google/langextract
https://t.me/DataScienceN
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3
This media is not supported in your browser
VIEW IN TELEGRAM
I recommend you to join @TradingNewsIO for Global & Economic News 24/7
โก๏ธStay up-to-date with real-time updates on global events.
โก๏ธ Click Here and JOIN NOW !
#ุฅุนูุงู InsideAds
โก๏ธStay up-to-date with real-time updates on global events.
โก๏ธ Click Here and JOIN NOW !
#ุฅุนูุงู InsideAds
โค2