_.codedevotee
7.87K subscribers
357 photos
70 videos
53 files
103 links
Code, Coffee and creative
This is official channel of code devotee page .

Dm for promotion @shubhamsaini262006
Download Telegram
Guide to Building an AI Agent

1️⃣ 𝗖𝗵𝗼𝗼𝘀𝗲 𝘁𝗵𝗲 𝗥𝗶𝗴𝗵𝘁 𝗟𝗟𝗠
Not all LLMs are equal. Pick one that:
- Excels in reasoning benchmarks
- Supports chain-of-thought (CoT) prompting
- Delivers consistent responses

📌 Tip: Experiment with models & fine-tune prompts to enhance reasoning.

2️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁’𝘀 𝗖𝗼𝗻𝘁𝗿𝗼𝗹 𝗟𝗼𝗴𝗶𝗰
Your agent needs a strategy:
- Tool Use: Call tools when needed; otherwise, respond directly.
- Basic Reflection: Generate, critique, and refine responses.
- ReAct: Plan, execute, observe, and iterate.
- Plan-then-Execute: Outline all steps first, then execute.

📌 Choosing the right approach improves reasoning & reliability.

3️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝗖𝗼𝗿𝗲 𝗜𝗻𝘀𝘁𝗿𝘂𝗰𝘁𝗶𝗼𝗻𝘀 & 𝗙𝗲𝗮𝘁𝘂𝗿𝗲𝘀
Set operational rules:
- How to handle unclear queries? (Ask clarifying questions)
- When to use external tools?
- Formatting rules? (Markdown, JSON, etc.)
- Interaction style?

📌 Clear system prompts shape agent behavior.

4️⃣ 𝗜𝗺𝗽𝗹𝗲𝗺𝗲𝗻𝘁 𝗮 𝗠𝗲𝗺𝗼𝗿𝘆 𝗦𝘁𝗿𝗮𝘁𝗲𝗴𝘆
LLMs forget past interactions. Memory strategies:
- Sliding Window: Retain recent turns, discard old ones.
- Summarized Memory: Condense key points for recall.
- Long-Term Memory: Store user preferences for personalization.

📌 Example: A financial AI recalls risk tolerance from past chats.

5️⃣ 𝗘𝗾𝘂𝗶𝗽 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁 𝘄𝗶𝘁𝗵 𝗧𝗼𝗼𝗹𝘀 & 𝗔𝗣𝗜𝘀
Extend capabilities with external tools:
- Name: Clear, intuitive (e.g., "StockPriceRetriever")
- Description: What does it do?
- Schemas: Define input/output formats
- Error Handling: How to manage failures?

📌 Example: A support AI retrieves order details via CRM API.

6️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁’𝘀 𝗥𝗼𝗹𝗲 & 𝗞𝗲𝘆 𝗧𝗮𝘀𝗸𝘀
Narrowly defined agents perform better. Clarify:
- Mission: (e.g., "I analyze datasets for insights.")
- Key Tasks: (Summarizing, visualizing, analyzing)
- Limitations: ("I don’t offer legal advice.")

📌 Example: A financial AI focuses on finance, not general knowledge.

7️⃣ 𝗛𝗮𝗻𝗱𝗹𝗶𝗻𝗴 𝗥𝗮𝘄 𝗟𝗟𝗠 𝗢𝘂𝘁𝗽𝘂𝘁𝘀
Post-process responses for structure & accuracy:
- Convert AI output to structured formats (JSON, tables)
- Validate correctness before user delivery
- Ensure correct tool execution

📌 Example: A financial AI converts extracted data into JSON.

8️⃣ 𝗦𝗰𝗮𝗹𝗶𝗻𝗴 𝘁𝗼 𝗠𝘂𝗹𝘁𝗶-𝗔𝗴𝗲𝗻𝘁 𝗦𝘆𝘀𝘁𝗲𝗺𝘀 (𝗔𝗱𝘃𝗮𝗻𝗰𝗲𝗱)
For complex workflows:
- Info Sharing: What context is passed between agents?
- Error Handling: What if one agent fails?
- State Management: How to pause/resume tasks?

📌 Example:
1️⃣ One agent fetches data
2️⃣ Another summarizes
3️⃣ A third generates a report

Master the fundamentals, experiment, and refine and.. now go build something amazing!
5
🔰 Backend RoadMap 2025 Beginner To Advanced

#webdevelopment
6
🧿 ReactJS Cheat-Sheet

This Post includes a ReactJs cheat sheet to make it easy for our followers to work with Reactjs.
3👍3
Fullstack Web Development 👆
7
🚀 Sigma 6.0 Course – Apna College Special Offer! 🎉

💰 Actual Price: ₹8999
🔥 Offer Price: Just ₹499!

🎯 What You’ll Learn:
🌐 Development: Master HTML, CSS, JavaScript, React, Node.js, Express, MongoDB, and Full-Stack Projects.
📚 DSA: Crack Data Structures & Algorithms with practical, real-world problem-solving techniques.
🧠 Quantum Aptitude: Learn advanced aptitude strategies to excel in interviews and placements.

Hands-On Projects: Build Full-Stack Applications, tackle DSA Challenges, and implement real-world Aptitude Scenarios.

Why Choose This Course?
Perfect for college students to become industry-ready, boost your resume, and ace interviews with confidence!

Hurry! Limited-Time Offer – Don’t miss out!

👉 Message here to buy: @shubhamsaini262006
5🔥1
Go and check out new reel
Do like and comment 🙏
https://www.instagram.com/reel/DGqYGddTRfP/?igsh=bnRsb3Qwc3Z4eWFx
4🔥1
Python Libraries for Generative AI
6🔥1
Developer: I trained AI. (2015)

AI: Now I train you. (2025) 😂🔥
8👍4🔥1👏1