🔰🔰 Beautiful Focus Outlines
Thomas notes that focus outlines are often seen as a purely technical requirement, but suggests we should treat them as essential design elements that can help create “interfaces that are both beautiful and inclusive”, noting how they are fundamental to an accessible web. Also looks at a multi-colored striped approach, and a proposed native way to handling just that. Plenty of good examples here.
❤4
Guide to Building an AI Agent
1️⃣ 𝗖𝗵𝗼𝗼𝘀𝗲 𝘁𝗵𝗲 𝗥𝗶𝗴𝗵𝘁 𝗟𝗟𝗠
Not all LLMs are equal. Pick one that:
- Excels in reasoning benchmarks
- Supports chain-of-thought (CoT) prompting
- Delivers consistent responses
📌 Tip: Experiment with models & fine-tune prompts to enhance reasoning.
2️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁’𝘀 𝗖𝗼𝗻𝘁𝗿𝗼𝗹 𝗟𝗼𝗴𝗶𝗰
Your agent needs a strategy:
- Tool Use: Call tools when needed; otherwise, respond directly.
- Basic Reflection: Generate, critique, and refine responses.
- ReAct: Plan, execute, observe, and iterate.
- Plan-then-Execute: Outline all steps first, then execute.
📌 Choosing the right approach improves reasoning & reliability.
3️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝗖𝗼𝗿𝗲 𝗜𝗻𝘀𝘁𝗿𝘂𝗰𝘁𝗶𝗼𝗻𝘀 & 𝗙𝗲𝗮𝘁𝘂𝗿𝗲𝘀
Set operational rules:
- How to handle unclear queries? (Ask clarifying questions)
- When to use external tools?
- Formatting rules? (Markdown, JSON, etc.)
- Interaction style?
📌 Clear system prompts shape agent behavior.
4️⃣ 𝗜𝗺𝗽𝗹𝗲𝗺𝗲𝗻𝘁 𝗮 𝗠𝗲𝗺𝗼𝗿𝘆 𝗦𝘁𝗿𝗮𝘁𝗲𝗴𝘆
LLMs forget past interactions. Memory strategies:
- Sliding Window: Retain recent turns, discard old ones.
- Summarized Memory: Condense key points for recall.
- Long-Term Memory: Store user preferences for personalization.
📌 Example: A financial AI recalls risk tolerance from past chats.
5️⃣ 𝗘𝗾𝘂𝗶𝗽 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁 𝘄𝗶𝘁𝗵 𝗧𝗼𝗼𝗹𝘀 & 𝗔𝗣𝗜𝘀
Extend capabilities with external tools:
- Name: Clear, intuitive (e.g., "StockPriceRetriever")
- Description: What does it do?
- Schemas: Define input/output formats
- Error Handling: How to manage failures?
📌 Example: A support AI retrieves order details via CRM API.
6️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁’𝘀 𝗥𝗼𝗹𝗲 & 𝗞𝗲𝘆 𝗧𝗮𝘀𝗸𝘀
Narrowly defined agents perform better. Clarify:
- Mission: (e.g., "I analyze datasets for insights.")
- Key Tasks: (Summarizing, visualizing, analyzing)
- Limitations: ("I don’t offer legal advice.")
📌 Example: A financial AI focuses on finance, not general knowledge.
7️⃣ 𝗛𝗮𝗻𝗱𝗹𝗶𝗻𝗴 𝗥𝗮𝘄 𝗟𝗟𝗠 𝗢𝘂𝘁𝗽𝘂𝘁𝘀
Post-process responses for structure & accuracy:
- Convert AI output to structured formats (JSON, tables)
- Validate correctness before user delivery
- Ensure correct tool execution
📌 Example: A financial AI converts extracted data into JSON.
8️⃣ 𝗦𝗰𝗮𝗹𝗶𝗻𝗴 𝘁𝗼 𝗠𝘂𝗹𝘁𝗶-𝗔𝗴𝗲𝗻𝘁 𝗦𝘆𝘀𝘁𝗲𝗺𝘀 (𝗔𝗱𝘃𝗮𝗻𝗰𝗲𝗱)
For complex workflows:
- Info Sharing: What context is passed between agents?
- Error Handling: What if one agent fails?
- State Management: How to pause/resume tasks?
📌 Example:
1️⃣ One agent fetches data
2️⃣ Another summarizes
3️⃣ A third generates a report
Master the fundamentals, experiment, and refine and.. now go build something amazing!
1️⃣ 𝗖𝗵𝗼𝗼𝘀𝗲 𝘁𝗵𝗲 𝗥𝗶𝗴𝗵𝘁 𝗟𝗟𝗠
Not all LLMs are equal. Pick one that:
- Excels in reasoning benchmarks
- Supports chain-of-thought (CoT) prompting
- Delivers consistent responses
📌 Tip: Experiment with models & fine-tune prompts to enhance reasoning.
2️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁’𝘀 𝗖𝗼𝗻𝘁𝗿𝗼𝗹 𝗟𝗼𝗴𝗶𝗰
Your agent needs a strategy:
- Tool Use: Call tools when needed; otherwise, respond directly.
- Basic Reflection: Generate, critique, and refine responses.
- ReAct: Plan, execute, observe, and iterate.
- Plan-then-Execute: Outline all steps first, then execute.
📌 Choosing the right approach improves reasoning & reliability.
3️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝗖𝗼𝗿𝗲 𝗜𝗻𝘀𝘁𝗿𝘂𝗰𝘁𝗶𝗼𝗻𝘀 & 𝗙𝗲𝗮𝘁𝘂𝗿𝗲𝘀
Set operational rules:
- How to handle unclear queries? (Ask clarifying questions)
- When to use external tools?
- Formatting rules? (Markdown, JSON, etc.)
- Interaction style?
📌 Clear system prompts shape agent behavior.
4️⃣ 𝗜𝗺𝗽𝗹𝗲𝗺𝗲𝗻𝘁 𝗮 𝗠𝗲𝗺𝗼𝗿𝘆 𝗦𝘁𝗿𝗮𝘁𝗲𝗴𝘆
LLMs forget past interactions. Memory strategies:
- Sliding Window: Retain recent turns, discard old ones.
- Summarized Memory: Condense key points for recall.
- Long-Term Memory: Store user preferences for personalization.
📌 Example: A financial AI recalls risk tolerance from past chats.
5️⃣ 𝗘𝗾𝘂𝗶𝗽 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁 𝘄𝗶𝘁𝗵 𝗧𝗼𝗼𝗹𝘀 & 𝗔𝗣𝗜𝘀
Extend capabilities with external tools:
- Name: Clear, intuitive (e.g., "StockPriceRetriever")
- Description: What does it do?
- Schemas: Define input/output formats
- Error Handling: How to manage failures?
📌 Example: A support AI retrieves order details via CRM API.
6️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁’𝘀 𝗥𝗼𝗹𝗲 & 𝗞𝗲𝘆 𝗧𝗮𝘀𝗸𝘀
Narrowly defined agents perform better. Clarify:
- Mission: (e.g., "I analyze datasets for insights.")
- Key Tasks: (Summarizing, visualizing, analyzing)
- Limitations: ("I don’t offer legal advice.")
📌 Example: A financial AI focuses on finance, not general knowledge.
7️⃣ 𝗛𝗮𝗻𝗱𝗹𝗶𝗻𝗴 𝗥𝗮𝘄 𝗟𝗟𝗠 𝗢𝘂𝘁𝗽𝘂𝘁𝘀
Post-process responses for structure & accuracy:
- Convert AI output to structured formats (JSON, tables)
- Validate correctness before user delivery
- Ensure correct tool execution
📌 Example: A financial AI converts extracted data into JSON.
8️⃣ 𝗦𝗰𝗮𝗹𝗶𝗻𝗴 𝘁𝗼 𝗠𝘂𝗹𝘁𝗶-𝗔𝗴𝗲𝗻𝘁 𝗦𝘆𝘀𝘁𝗲𝗺𝘀 (𝗔𝗱𝘃𝗮𝗻𝗰𝗲𝗱)
For complex workflows:
- Info Sharing: What context is passed between agents?
- Error Handling: What if one agent fails?
- State Management: How to pause/resume tasks?
📌 Example:
1️⃣ One agent fetches data
2️⃣ Another summarizes
3️⃣ A third generates a report
Master the fundamentals, experiment, and refine and.. now go build something amazing!
❤5
🧿 ReactJS Cheat-Sheet
This Post includes a ReactJs cheat sheet to make it easy for our followers to work with Reactjs.
❤3👍3