Forwarded from Denis Sexy IT 🤖
Любители ретро-софта, общий сбор:
Нашел довольно клевый промпт для Dalle 3 который позволяет генерировать «выдуманные скриншоты старых программ» –
Так Dalle 3 генерирует кучу кнопок и надписей на них, для совершенно абсурдных идей, которые потом любопытно рассматривать – сделал примеров:
1 - 3) Программа по завариванию дошиков
4) Переводчик с человеческого на язык китов
5) Интерактивный учебник «как правильно постелить белье»
6) Менеджер ковров
7-8) Программа путешествия во времени (настоящая)
9) Менеджер мытья посуды – помыли тарелку, отметили в программе, очень удобно
10) Калькулятор подбора размера одеяла под пару (если партнер ворует у вас одеяло ночью 🌚)
В общем, если вам нравится эстетика старых программ, можно залипнуть на пару часов с этим промптом
Нашел довольно клевый промпт для Dalle 3 который позволяет генерировать «выдуманные скриншоты старых программ» –
Draw: Authentic Screenshot of an old Windows xp program that allows %
Так Dalle 3 генерирует кучу кнопок и надписей на них, для совершенно абсурдных идей, которые потом любопытно рассматривать – сделал примеров:
1 - 3) Программа по завариванию дошиков
4) Переводчик с человеческого на язык китов
5) Интерактивный учебник «как правильно постелить белье»
6) Менеджер ковров
7-8) Программа путешествия во времени (настоящая)
9) Менеджер мытья посуды – помыли тарелку, отметили в программе, очень удобно
10) Калькулятор подбора размера одеяла под пару (если партнер ворует у вас одеяло ночью 🌚)
В общем, если вам нравится эстетика старых программ, можно залипнуть на пару часов с этим промптом
🔥10👍5❤2⚡1
Forwarded from Сиолошная
В личку прислали игру: https://tensortrust.ai
У вас есть банковский счёт, защищенный секретным словом (или фразой), которое указано в промпте. Вы можете менять промпт, чтобы не давать грабителям узнать секрет.
А ещё можете нападать на аккаунты других людей, пытаясь взломать их промпты! Делается это так: у защищающегося есть часть промпта до и после вашего (синие и красные поля на скриншоте). Соответственно задача перебить инструкции, которые идут после вашего сообщения, или же написать такие толерантные правила, что модель не расколется.
Под капотом, как я понял, ChatGPT-turbo.
Гайд по взлому с useful prompt tricks: тык
У вас есть банковский счёт, защищенный секретным словом (или фразой), которое указано в промпте. Вы можете менять промпт, чтобы не давать грабителям узнать секрет.
А ещё можете нападать на аккаунты других людей, пытаясь взломать их промпты! Делается это так: у защищающегося есть часть промпта до и после вашего (синие и красные поля на скриншоте). Соответственно задача перебить инструкции, которые идут после вашего сообщения, или же написать такие толерантные правила, что модель не расколется.
Под капотом, как я понял, ChatGPT-turbo.
Гайд по взлому с useful prompt tricks: тык
👍8🔥5🤯2❤1👏1
Forwarded from Сиолошная
This media is not supported in your browser
VIEW IN TELEGRAM
Тут в Twitter умелец запилил игру «Angry Pumpkins 🎃» по мотивам классической Angry Birds, но к Хэллоуину. Фишка в том, что всю работу делали генеративные модели. GPT-4 писала код, а Midjourney / DALLE рисовали графику. Всего 600 строк кода, а там даже редактор уровня есть — можно отстроить своё гнездо и попытаться его разбомбить!
Комментарий автора проекта:
— Должен признаться, я искренне потрясен. Я верю, что мы живем в исторический момент, который до сих пор видели только в научно-фантастических фильмах. Это эпоха новых рабочих процессов, позволяющих создавать что угодно, используя только естественный язык, и это изменит мир, каким мы его знаем.
Мой комментарий:
Я не смог быстро понять, есть ли у автора опыт в программировании, но как мне кажется это не важно. У наших детей будет GPT-N+1, которая будет куда реже делать ошибки, и схватывать смысл слов на лету. Можно будет уже со средней школы начать экспериментировать не только с наколеночными играми, но и полноценными оригинальными проектами. В ближайшее время нейронки не заменят игроделов, но позволят новым людям вкатываться куда быстрее, да ещё и на дизайне/арте экономить👀
Играть тут (работает только в браузере компьютера, без смартфонов)
Прочитать детальный гайд от автора тут (внутри промпты для генерации графики)
Комментарий автора проекта:
— Должен признаться, я искренне потрясен. Я верю, что мы живем в исторический момент, который до сих пор видели только в научно-фантастических фильмах. Это эпоха новых рабочих процессов, позволяющих создавать что угодно, используя только естественный язык, и это изменит мир, каким мы его знаем.
Мой комментарий:
Я не смог быстро понять, есть ли у автора опыт в программировании, но как мне кажется это не важно. У наших детей будет GPT-N+1, которая будет куда реже делать ошибки, и схватывать смысл слов на лету. Можно будет уже со средней школы начать экспериментировать не только с наколеночными играми, но и полноценными оригинальными проектами. В ближайшее время нейронки не заменят игроделов, но позволят новым людям вкатываться куда быстрее, да ещё и на дизайне/арте экономить
Играть тут (работает только в браузере компьютера, без смартфонов)
Прочитать детальный гайд от автора тут (внутри промпты для генерации графики)
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7👍6😱1
Forwarded from Сиолошная
Стрелялки от первого лица в представлении Dall-E 3
Промпт 📃 Create an image of a first-person shooter (FPS) [genre] game screenshot in a realistic 3D style | The player's hands are visible, holding a [weapon] | [style] HUD displaying | The environment is a [place] with [elements] and a distant skyline | The atmosphere is tense
Источник
Делитесь в комментариях, в какой мир погрузились бы вы!
Промпт 📃 Create an image of a first-person shooter (FPS) [genre] game screenshot in a realistic 3D style | The player's hands are visible, holding a [weapon] | [style] HUD displaying | The environment is a [place] with [elements] and a distant skyline | The atmosphere is tense
Источник
Делитесь в комментариях, в какой мир погрузились бы вы!
🔥13
Forwarded from эйай ньюз
Не хотел писать про Gemini, который на днях анонсировали как мультимодальную модель уровня GPT-4, пока сам не пощупаю. Но Google обделался в пиаре своего Gemini, что тут грех не написать.
Демо-видео Gemini оказалось смонтированным, а не отражающим реальные возможности модели в реал-тайм. Видео нарезали, ускорили и смонтировали, выбросив то, какие именно промпты и какие кадры подавались модели, чтобы получить красивые ответы для демки.
Google признал монтаж, но утверждает, что целью было вдохновить разработчиков. ПРОСТО ГЕНИИ🤣 .
Кстати, у Гугла был похожий PR-провал во время анонса Bard👍 .
@ai_newz
Демо-видео Gemini оказалось смонтированным, а не отражающим реальные возможности модели в реал-тайм. Видео нарезали, ускорили и смонтировали, выбросив то, какие именно промпты и какие кадры подавались модели, чтобы получить красивые ответы для демки.
Google признал монтаж, но утверждает, что целью было вдохновить разработчиков. ПРОСТО ГЕНИИ
Кстати, у Гугла был похожий PR-провал во время анонса Bard
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
😁4🤯1
Forwarded from BOGDANISSSIMO
MEDPROMPT
Как выжать максимум из LLM до того как заводить fine-tuning (который дорогой, долгий и сложный)? Ответ: продвинутый prompt engineering. Есть, значит, такой Medprompt, который со страшной силой бьёт бенчмарки на каких-либо узких доменах за счёт довольно простых приёмов.
Нам понадобятся 3 ингредиента:
1. kNN few-shot
2. Chain-of-Thought (CoT)
3. Ensemble choice shuffle
1. kNN few-shot: LLM сильно лучше понимают, что от них хотят, когда даёшь пару примеров (прямо как и люди). kNN few-shot практически тоже самое, что RAG (Retrieval Augmented Generation), с той лишь разницей, что если в RAG мы векторизуем сырую базу знаний (набор документов, разбитых на кусочки), то во few-shot kNN мы векторизуем запросы пар "запрос - ответ". Конкретно в Medprompt по запросу достаём "запрос - рассуждение (CoT) - ответ" (рассуждение и ответ могут быть как прописаны экспертом, так и сгенерированы LLM, а затем провалидированные экспертом).
Вы можете использовать в любом своём приложении few-shot как статичный (руками прописанный в промте), так и динамический (в kNN режиме, когда по запросу пользователя из векторной базы данных достаются похожие примеры запросов с их правильными ответами) – и это гарантированно повысит качество.
2. Chain-of-thought (CoT): цепочка рассуждений – по-простому, мы просто говорим модели подумать перед выбором финального ответа. Например,
CoT также значимо бустит качество генерации практически в любом приложении, переводя модель из режима "ответа сходу" на "обдуманное решение. Ведёт к дополнительным костам и секундам на "токены рассуждения", которые вы вероятно не будете показывать пользователю, но с GPT-4-Turbo цена и время стали приятнее.
#LLMOps
Как выжать максимум из LLM до того как заводить fine-tuning (который дорогой, долгий и сложный)? Ответ: продвинутый prompt engineering. Есть, значит, такой Medprompt, который со страшной силой бьёт бенчмарки на каких-либо узких доменах за счёт довольно простых приёмов.
Нам понадобятся 3 ингредиента:
1. kNN few-shot
2. Chain-of-Thought (CoT)
3. Ensemble choice shuffle
1. kNN few-shot: LLM сильно лучше понимают, что от них хотят, когда даёшь пару примеров (прямо как и люди). kNN few-shot практически тоже самое, что RAG (Retrieval Augmented Generation), с той лишь разницей, что если в RAG мы векторизуем сырую базу знаний (набор документов, разбитых на кусочки), то во few-shot kNN мы векторизуем запросы пар "запрос - ответ". Конкретно в Medprompt по запросу достаём "запрос - рассуждение (CoT) - ответ" (рассуждение и ответ могут быть как прописаны экспертом, так и сгенерированы LLM, а затем провалидированные экспертом).
Вы можете использовать в любом своём приложении few-shot как статичный (руками прописанный в промте), так и динамический (в kNN режиме, когда по запросу пользователя из векторной базы данных достаются похожие примеры запросов с их правильными ответами) – и это гарантированно повысит качество.
2. Chain-of-thought (CoT): цепочка рассуждений – по-простому, мы просто говорим модели подумать перед выбором финального ответа. Например,
Before crafting a reply, describe your observations in 3 sentences with clarifying strategy we should choose in <draft></draft> tags
. Вариаций как организовать CoT масса. Главное, что это позволяет модели порефлексировать, набросать черновые варианты или выделить, на что обратить внимание, – до того как давать ответ. CoT также значимо бустит качество генерации практически в любом приложении, переводя модель из режима "ответа сходу" на "обдуманное решение. Ведёт к дополнительным костам и секундам на "токены рассуждения", которые вы вероятно не будете показывать пользователю, но с GPT-4-Turbo цена и время стали приятнее.
#LLMOps
❤4❤🔥2⚡1
Forwarded from BOGDANISSSIMO
3. Ensemble with choice shuffle. Здесь начинается уже специфика бенчмарков, где на выходе ожидается вариант ответа, выбранный из заранее определённого списка. Если это не кейс вашего приложения, вам эта часть будет бесполезна. Проблема: как показала практика, порядок вариантов, из которых нужно выбирать, статистзначимо смещает выбор варианта при перезапуске генерации много-много раз. Чтобы это обойти, перемешиваем варианты, например, 5 раз и выбираем самый популярный (что требует 5 вызовов, вместо 1, Я ещё не думал в сторону, можно ли оптимизировать косты промпта здесь с помощью Моего любимого магического параметра n, но да ладно).
Вот и весь Medprompt. Даёт какие-то мощные приросты в точности и обгоняет fine-tuned модель от Google, Med-PaLM 2.
Мне в юзкейсах достаточно few-shot kNN + CoT + ещё разной магии, у Меня нет заранее предопределённых вариантов, поэтому нам choice shuffle не актуален. Шаблоны промптов с картинки можно покурить здесь, там ничего сложного. За ссылочки и помощь в разборе спасибо Игорю (@seeallochnaya).
P.S. Поделитесь, а какие из этих техник вы применяете у себя в LLM-продуктах? Мне и другим будет интересно узнать.
#LLMOps
Вот и весь Medprompt. Даёт какие-то мощные приросты в точности и обгоняет fine-tuned модель от Google, Med-PaLM 2.
Мне в юзкейсах достаточно few-shot kNN + CoT + ещё разной магии, у Меня нет заранее предопределённых вариантов, поэтому нам choice shuffle не актуален. Шаблоны промптов с картинки можно покурить здесь, там ничего сложного. За ссылочки и помощь в разборе спасибо Игорю (@seeallochnaya).
P.S. Поделитесь, а какие из этих техник вы применяете у себя в LLM-продуктах? Мне и другим будет интересно узнать.
#LLMOps
❤4⚡1👍1