Forwarded from Все о блокчейн/мозге/space/WEB 3.0 в России и мире
На этой неделе ВОЗ опубликовала 1-й доклад об использовании ИИ в здравоохранении, а также 6 принципов проектирования, разработки и внедрения ИИ.
В документе говорится о переоценке преимуществ ИИ, одновременно, подчеркивая, как с помощью технологии можно улучшить скрининг, оказание клинической помощи и тд.
По оценке IDC, в 2020г. объем, создаваемых данных о здоровье, превысил 2000 эксабайт, ежегодно он будет расти на 48% в год.
В докладе ВОЗ отмечаются, что возможности, создаваемые ИИ, связаны с рисками.
Закодированные в алгоритмах предубеждения могут причинить вред пациентам и поставщикам медицинских услуг. Системы, обученные в основном на данных, полученных от людей из стран с высоким уровнем доходов, например, могут не работать для пациентов с низким и средним уровнем доходов. Более того, нерегулируемое использование ИИ может подорвать права пациентов в пользу бизнеса или государства.
Наборы данных, используемых для обучения систем искусственного интеллекта, которые могут прогнозировать наступление таких болезней как Альцгеймер, диабет, рак груди и шизофрения, поступают из различных источников. Часто пациенты не знают, куда отправляются их персданные. В 2017 году регулирующий орган Великобритании пришел к выводу, что фонд Royal Free London NHS Foundation Trust, подразделение Национальной службы здравоохранения Великобритании, предоставил DeepMind данные о 1,6 миллионах пациентов без их согласия.
Независимо от источника информации данные могут содержать предвзятость, создавая неравенство в алгоритмах ИИ, обученных диагностике заболеваний. Команда британских ученых обнаружила, что почти все наборы данных о заболеваниях глаз поступают из Северной Америки, Европы и Китая, а это означает, что алгоритмы диагностики заболеваний глаз с меньшей вероятностью работают для расовых групп из недостаточно представленных стран.
Чтобы еще раз показать эту точку зрения, исследователи из Стэнфорда обнаружили - некоторые ИИ медицинские устройства, одобренные FDA, уязвимы. По мере того, как ИИ становится встроенным в большее количество медицинских устройств (в прошлом году FDA одобрило более 65 устройств) - точность этих алгоритмов не изучается тщательно.
Чтобы ограничить риски и увеличить пользу ИИ для здоровья, ВОЗ рекомендует предпринять меры:
1. компенсация должна быть доступна всем, на кого негативно повлияли ИИ - решения
2. необходимо постоянно оценивать приложения ИИ, чтобы определить, соответствуют ли они ожиданиям и требованиям
3. ВОЗ рекомендует как правительствам, так и компаниям устранять сбои на рабочем месте, вызванные автоматизированными системами, включая обучение медицинских работников и их адаптации к использованию ИИ
4. Системы ИИ должны быть тщательно спроектированы с учетом разнообразия социально-экономических и условий здравоохранения.
В документе говорится о переоценке преимуществ ИИ, одновременно, подчеркивая, как с помощью технологии можно улучшить скрининг, оказание клинической помощи и тд.
По оценке IDC, в 2020г. объем, создаваемых данных о здоровье, превысил 2000 эксабайт, ежегодно он будет расти на 48% в год.
В докладе ВОЗ отмечаются, что возможности, создаваемые ИИ, связаны с рисками.
Закодированные в алгоритмах предубеждения могут причинить вред пациентам и поставщикам медицинских услуг. Системы, обученные в основном на данных, полученных от людей из стран с высоким уровнем доходов, например, могут не работать для пациентов с низким и средним уровнем доходов. Более того, нерегулируемое использование ИИ может подорвать права пациентов в пользу бизнеса или государства.
Наборы данных, используемых для обучения систем искусственного интеллекта, которые могут прогнозировать наступление таких болезней как Альцгеймер, диабет, рак груди и шизофрения, поступают из различных источников. Часто пациенты не знают, куда отправляются их персданные. В 2017 году регулирующий орган Великобритании пришел к выводу, что фонд Royal Free London NHS Foundation Trust, подразделение Национальной службы здравоохранения Великобритании, предоставил DeepMind данные о 1,6 миллионах пациентов без их согласия.
Независимо от источника информации данные могут содержать предвзятость, создавая неравенство в алгоритмах ИИ, обученных диагностике заболеваний. Команда британских ученых обнаружила, что почти все наборы данных о заболеваниях глаз поступают из Северной Америки, Европы и Китая, а это означает, что алгоритмы диагностики заболеваний глаз с меньшей вероятностью работают для расовых групп из недостаточно представленных стран.
Чтобы еще раз показать эту точку зрения, исследователи из Стэнфорда обнаружили - некоторые ИИ медицинские устройства, одобренные FDA, уязвимы. По мере того, как ИИ становится встроенным в большее количество медицинских устройств (в прошлом году FDA одобрило более 65 устройств) - точность этих алгоритмов не изучается тщательно.
Чтобы ограничить риски и увеличить пользу ИИ для здоровья, ВОЗ рекомендует предпринять меры:
1. компенсация должна быть доступна всем, на кого негативно повлияли ИИ - решения
2. необходимо постоянно оценивать приложения ИИ, чтобы определить, соответствуют ли они ожиданиям и требованиям
3. ВОЗ рекомендует как правительствам, так и компаниям устранять сбои на рабочем месте, вызванные автоматизированными системами, включая обучение медицинских работников и их адаптации к использованию ИИ
4. Системы ИИ должны быть тщательно спроектированы с учетом разнообразия социально-экономических и условий здравоохранения.
World Health Organization
WHO issues first global report on Artificial Intelligence (AI) in health and six guiding principles for its design and use
Artificial Intelligence (AI) holds great promise for improving the delivery of healthcare and medicine worldwide, but only if ethics and human rights are put at the heart of its design, deployment, and use, according to new WHO guidance published today. The…
Небольшое оффтопик, но не могу не поделиться и молчать.
Не знаю, кто как относиться к теме AGI, но в любом случае рекомендцю ознакомиться со статьей во вложении. Несмотря на то, что статья не новая (2014 год) в ней рассматриваются 2 противоположных теории общего ИИ - технологической сингулярности и теории квантового сознания Пенроуза.
Не хочу тут грузить деталями, но напишу свои выводы по прочтению:
- сингулярность не наступит, тк скорость вычислений никак не относиться к созникновению сознания
- у нас нет теории нашего сознания и нет даже физической теории, на которой можно построить теорию сознания. Пенроуз использует квантовую физику только потому, что классическая физика никак не помогает сделать модель сознания, а другой физики у нас нет
- по всей видимости наша реальность имеет фундаментальные ограничения, к которым мы можем асимптотически приближаться но которые никогда не сможем преодолеть (постоянная планка, скорость света) и сознание относиться к таким же фундаментальным ограничениям
Ну а то, что мы считаем ИИ сейчас (ML) в общем то остается довольно полезным шагом в автоматизации и вычислениях и продолжает расширять возможности людей за счет технологий, но ни в коей мере их не заменяет.
Не знаю, кто как относиться к теме AGI, но в любом случае рекомендцю ознакомиться со статьей во вложении. Несмотря на то, что статья не новая (2014 год) в ней рассматриваются 2 противоположных теории общего ИИ - технологической сингулярности и теории квантового сознания Пенроуза.
Не хочу тут грузить деталями, но напишу свои выводы по прочтению:
- сингулярность не наступит, тк скорость вычислений никак не относиться к созникновению сознания
- у нас нет теории нашего сознания и нет даже физической теории, на которой можно построить теорию сознания. Пенроуз использует квантовую физику только потому, что классическая физика никак не помогает сделать модель сознания, а другой физики у нас нет
- по всей видимости наша реальность имеет фундаментальные ограничения, к которым мы можем асимптотически приближаться но которые никогда не сможем преодолеть (постоянная планка, скорость света) и сознание относиться к таким же фундаментальным ограничениям
Ну а то, что мы считаем ИИ сейчас (ML) в общем то остается довольно полезным шагом в автоматизации и вычислениях и продолжает расширять возможности людей за счет технологий, но ни в коей мере их не заменяет.
маятник продолжает качаться
https://vc.ru/legal/267002-apellyacionnyy-sud-zapretil-double-data-sobirat-dannye-polzovateley-vkontakte-dlya-prodazhi-uslug?comments
https://vc.ru/legal/267002-apellyacionnyy-sud-zapretil-double-data-sobirat-dannye-polzovateley-vkontakte-dlya-prodazhi-uslug?comments
vc.ru
Апелляционный суд запретил Double Data собирать данные пользователей «ВКонтакте» для продажи услуг — Право на vc.ru
Соцсеть смогла обжаловать решение.
Forwarded from Архитектура ИТ-решений
Конференция о дата-инжиниринге SmartData 2021 ищет спикеров 🎙
Вам есть о чем рассказать и что обсудить с коллегами по цеху? Тогда вам нужно подать заявку на участие в конференции!
В этом году SmartData пройдет 11-14 октября, онлайн (гибридный формат решили отложить из-за непредсказуемости ввода ограничений на офлайн мероприятия).
Темы, которые ждут больше всего:
– Стриминг;
– СУБД и хранилища для больших данных;
– Архитектура DWH;
– Data governance;
–Технологии построения ETL;
– Оркестрация и MLOps.
Но этим списком не ограничивается — вы можете подать заявку с любой темой из области дата-инжиниринга.
Если все-таки сомневаетесь, то программный комитет всегда готов обсудить актуальность темы и помочь выбрать правильный вектор доклада. Плюс, ребята помогут с прокачкой ваших ораторских навыков, если у вас мало опыта в публичных выступлениях.
➡️ Подать заявку и узнать подробности можно на сайте.
Вопросы присылайте на почту program@smartdata.ru
Вам есть о чем рассказать и что обсудить с коллегами по цеху? Тогда вам нужно подать заявку на участие в конференции!
В этом году SmartData пройдет 11-14 октября, онлайн (гибридный формат решили отложить из-за непредсказуемости ввода ограничений на офлайн мероприятия).
Темы, которые ждут больше всего:
– Стриминг;
– СУБД и хранилища для больших данных;
– Архитектура DWH;
– Data governance;
–Технологии построения ETL;
– Оркестрация и MLOps.
Но этим списком не ограничивается — вы можете подать заявку с любой темой из области дата-инжиниринга.
Если все-таки сомневаетесь, то программный комитет всегда готов обсудить актуальность темы и помочь выбрать правильный вектор доклада. Плюс, ребята помогут с прокачкой ваших ораторских навыков, если у вас мало опыта в публичных выступлениях.
➡️ Подать заявку и узнать подробности можно на сайте.
Вопросы присылайте на почту program@smartdata.ru
И еще немного про Data Mesh
Немного мыслей тут родилось про Data Mesh. Тема популярная, все начинают вокруг говорить о том, что они применяют этот подход, реализуют проекты и тд. Тем не менее все время не могу уловить какую “суть” этого подхода, какую то формулировку, которая в простой форме объяснит основное отличие от предыдущих концепций, типа Data Lake и тп. Читаешь статьи, вроде много букв везде, а вот понимание не складывается. И вот проштудировал еще раз основной источник на сайте Мартина Фаулера (см ниже) и вот родилось такое понимание:
Data Mesh в первую очередь это организационная концепция, а не техническая. Она говорит о том, что мы децентрализуем ОТВЕТСТВЕННОСТЬ за данные между разными командами, обеспечивая их нужным (даже централизованным) техническим инструментарием, для того, что бы они эту ответственность могли осуществлять.
Вот в чем суть - основные проблемы во всех больших проектах DHW/DL это больше организационные проблемы взаимодействия разных команд, а не техническое проблемы обработки данных, и Data Mesh предлагает нам концепцию, по которой каждая команда, которая производит данные, должна быть ответственной за переиспользование этих данных другими командами, что бы катализировать использования данных в организации.
Реализации этой концепции требует:
⁃ В первую очередь организации изменения - изменения культуры, формирования новых KPI, поддержки со стороны руководства и тд.
⁃ Во вторую очередь процессные изменения - процессы Data Goverence, обеспечивающие “правила игры” общие для всех команд
⁃ В третью очередь технические изменения - нужно эти команды обеспечить технической возможностью выполнять новую функцию (хранить данные обрабатывать), а так же поддержать технически функции типа Data Discovery и прочие из пункта 2. И это очень важно сделать при реализации данного подхода.
И еще раз подчеркну, что технические решения из третьего пункта могут быть вполне себе централизованными Data Lake, если это экономически и технически обосновано.
Вот такие у меня сложились персональные выводы на текущий момент.
https://martinfowler.com/articles/data-monolith-to-mesh.html
Немного мыслей тут родилось про Data Mesh. Тема популярная, все начинают вокруг говорить о том, что они применяют этот подход, реализуют проекты и тд. Тем не менее все время не могу уловить какую “суть” этого подхода, какую то формулировку, которая в простой форме объяснит основное отличие от предыдущих концепций, типа Data Lake и тп. Читаешь статьи, вроде много букв везде, а вот понимание не складывается. И вот проштудировал еще раз основной источник на сайте Мартина Фаулера (см ниже) и вот родилось такое понимание:
Data Mesh в первую очередь это организационная концепция, а не техническая. Она говорит о том, что мы децентрализуем ОТВЕТСТВЕННОСТЬ за данные между разными командами, обеспечивая их нужным (даже централизованным) техническим инструментарием, для того, что бы они эту ответственность могли осуществлять.
Вот в чем суть - основные проблемы во всех больших проектах DHW/DL это больше организационные проблемы взаимодействия разных команд, а не техническое проблемы обработки данных, и Data Mesh предлагает нам концепцию, по которой каждая команда, которая производит данные, должна быть ответственной за переиспользование этих данных другими командами, что бы катализировать использования данных в организации.
Реализации этой концепции требует:
⁃ В первую очередь организации изменения - изменения культуры, формирования новых KPI, поддержки со стороны руководства и тд.
⁃ Во вторую очередь процессные изменения - процессы Data Goverence, обеспечивающие “правила игры” общие для всех команд
⁃ В третью очередь технические изменения - нужно эти команды обеспечить технической возможностью выполнять новую функцию (хранить данные обрабатывать), а так же поддержать технически функции типа Data Discovery и прочие из пункта 2. И это очень важно сделать при реализации данного подхода.
И еще раз подчеркну, что технические решения из третьего пункта могут быть вполне себе централизованными Data Lake, если это экономически и технически обосновано.
Вот такие у меня сложились персональные выводы на текущий момент.
https://martinfowler.com/articles/data-monolith-to-mesh.html
martinfowler.com
How to Move Beyond a Monolithic Data Lake to a Distributed Data
Mesh
Mesh
There are problems with the centralized data lake. A future data mesh needs domains, self-service platforms, and product thinking.
Дайджест статей 11/07/2021
Всем привет! Довольно много статей по теме управления данными и работы с данными вообще появляется в поле моего внимания, но делать краткие обзоры каждой сложно, а спамить в канал и пересылать каждую статью - не хочется. Поэтому решил просто делать еженедельный дайджест того, что пролетает по нашей теме на Хабре и других источниках. Публиковать буду по пятницам, что бы было чем заняться в выходные 🙂
Вот подборка этой недели:
Data Mesh: как работать с данными без монолита
https://habr.com/ru/company/dododev/blog/475476/
Как и зачем «Ашан» построил платформу для работы с Big Data в публичном облаке
https://habr.com/ru/company/mailru/blog/565664/
Как Hadoop-кластер помогает нам выполнять триллионы вычислений в день и выводить аналитику на новый уровень
https://m.habr.com/ru/company/moex/blog/566174/
Следующий этап: построение конвейера данных от периферии до аналитики
https://habr.com/ru/company/cloudera/blog/560236/
BeeTech 2021: обзор докладов big-data, искуственный интеллект, IT-архитектура, QA, Back-End
BeeTech 2021: обзор докладов big-data, искуственный интеллект, IT-архитектура, QA, Back-End / Блог компании Beeline Казахстан / Хабр
Всем привет! Довольно много статей по теме управления данными и работы с данными вообще появляется в поле моего внимания, но делать краткие обзоры каждой сложно, а спамить в канал и пересылать каждую статью - не хочется. Поэтому решил просто делать еженедельный дайджест того, что пролетает по нашей теме на Хабре и других источниках. Публиковать буду по пятницам, что бы было чем заняться в выходные 🙂
Вот подборка этой недели:
Data Mesh: как работать с данными без монолита
https://habr.com/ru/company/dododev/blog/475476/
Как и зачем «Ашан» построил платформу для работы с Big Data в публичном облаке
https://habr.com/ru/company/mailru/blog/565664/
Как Hadoop-кластер помогает нам выполнять триллионы вычислений в день и выводить аналитику на новый уровень
https://m.habr.com/ru/company/moex/blog/566174/
Следующий этап: построение конвейера данных от периферии до аналитики
https://habr.com/ru/company/cloudera/blog/560236/
BeeTech 2021: обзор докладов big-data, искуственный интеллект, IT-архитектура, QA, Back-End
BeeTech 2021: обзор докладов big-data, искуственный интеллект, IT-архитектура, QA, Back-End / Блог компании Beeline Казахстан / Хабр
Хабр
Data Mesh: как работать с данными без монолита
Привет, Хабр! Мы в Dodo Pizza Engineering очень любим данные (а кто их сейчас не любит?). Сейчас будет история о том, как накопить все данные мира Dodo Pizza и дать любому сотруднику компании удобный...
смотрите? https://youtu.be/RTpWYWIfP7Y
YouTube
WATCH LIVE: Virgin Galactic Unity 22 Spaceflight Livestream
On July 11, 2021 Virgin Galactic flew its first fully crewed rocket powered test flight, which welcomed the beginning of a new space age.
Aboard #Unity22 was our team of two pilots and four mission specialists, including Sir Richard Branson. They put our…
Aboard #Unity22 was our team of two pilots and four mission specialists, including Sir Richard Branson. They put our…
Воскресный офтопик (и я писал об этом в FB, но закину и сюда, может кому пригодится)
Для тех, кто много читает - я тут несколько лет мучаюсь с софтом для чтения электронных книг. iBooks - единственный достойный тул, но он ужасен, особенно на компе. Невозможно управлять классификацией книг, синхронизация загадочна, обложки не отображаются и тд.
Неожиданно наткнулся на очень достойную альтернативу (правда платную) - можно грузить свои книги, синхронизировать между устройствами, читать везде и тд и работает вроде четко.
Делюсь: https://www.bookfusion.com/
Для тех, кто много читает - я тут несколько лет мучаюсь с софтом для чтения электронных книг. iBooks - единственный достойный тул, но он ужасен, особенно на компе. Невозможно управлять классификацией книг, синхронизация загадочна, обложки не отображаются и тд.
Неожиданно наткнулся на очень достойную альтернативу (правда платную) - можно грузить свои книги, синхронизировать между устройствами, читать везде и тд и работает вроде четко.
Делюсь: https://www.bookfusion.com/
Forwarded from Smart Data (Denis Solovyov)
Крутой доклад про построение хардкорной Big Data архитектуры для Почты России.
YouTube
BigПочта: как мы строили DataLake в Почте России / Алексей Вовченко (Luxoft)
Приглашаем на конференцию HighLoad++ 2024, которая пройдет 2 и 3 декабря в Москве!
Программа, подробности и билеты по ссылке: https://clck.ru/3DD4yb
--------
HighLoad++ 2017
Тезисы:
http://www.highload.ru/2017/abstracts/3014.html
Мы планируем поделиться…
Программа, подробности и билеты по ссылке: https://clck.ru/3DD4yb
--------
HighLoad++ 2017
Тезисы:
http://www.highload.ru/2017/abstracts/3014.html
Мы планируем поделиться…
Всем привет! В следующий четверг, 22 июля, в 21:00 МСК, совместно с авторами канала https://t.me/noml_digest, проведем голосовой чат на тему модных трендов в области управления данными.
Ссылка на чат для подключения: https://t.me/noml_community?voicechat
Темы: Data Warehouse, Data Lake, Data Vault, Data Lakehouse, Data Fabric, Data Mesh, Data Lab, Data Hub, DataOps, Data Governance ... ну и конечно же Big Data.
Будем разбираться что означают все эти слова, и как заложить крепкий фундамент для успешных ML/DS проектов в виде современной Data Management системы.
А именно, в повестке встречи следующее:
- Эволюция подходов в технологиях построения Data Management систем и методологиях Data Governance.
- Плюсы и минус централизации и децентрализации управления корпоративными данными, как обычно будем искать истину где-то посередине)
- Технологические аспекты и грани децентрализованной обработки и хранения данных, вспомним про Data Federation и обсудим новомодный Data Fabric.
- Как Ops добрался до данных и аналитики: процессы, роли и инструменты DataOps.
- Без качественных данных качественную ML модель не построить. Как решается задачи Data Quality с точки зрения технологий и методологий.
Участники дискуссии
- Денис Афанасьев, Head of TechPlatforms в SberDevices, основатель CleverDATA
- Сергей Абрамов, Head of Feature&ML Engineering, GlowByte Advanced Analytics
- Дмитрий Инокентьев, Архитектор Data платформ, GlowByte Consulting
Ссылка на чат для подключения: https://t.me/noml_community?voicechat
Темы: Data Warehouse, Data Lake, Data Vault, Data Lakehouse, Data Fabric, Data Mesh, Data Lab, Data Hub, DataOps, Data Governance ... ну и конечно же Big Data.
Будем разбираться что означают все эти слова, и как заложить крепкий фундамент для успешных ML/DS проектов в виде современной Data Management системы.
А именно, в повестке встречи следующее:
- Эволюция подходов в технологиях построения Data Management систем и методологиях Data Governance.
- Плюсы и минус централизации и децентрализации управления корпоративными данными, как обычно будем искать истину где-то посередине)
- Технологические аспекты и грани децентрализованной обработки и хранения данных, вспомним про Data Federation и обсудим новомодный Data Fabric.
- Как Ops добрался до данных и аналитики: процессы, роли и инструменты DataOps.
- Без качественных данных качественную ML модель не построить. Как решается задачи Data Quality с точки зрения технологий и методологий.
Участники дискуссии
- Денис Афанасьев, Head of TechPlatforms в SberDevices, основатель CleverDATA
- Сергей Абрамов, Head of Feature&ML Engineering, GlowByte Advanced Analytics
- Дмитрий Инокентьев, Архитектор Data платформ, GlowByte Consulting
Telegram
NoML Digest
База знаний https://noml.club
Чат https://t.me/noml_community
YouTube https://www.youtube.com/@NoML_community
По всем вопросам к @psnurnitsyn
Чат https://t.me/noml_community
YouTube https://www.youtube.com/@NoML_community
По всем вопросам к @psnurnitsyn
Дайджест статей 16/07/2021
Платформа обработки данных Билайн
https://habr.com/ru/company/beeline/blog/567508/
Hadoop или MongoDB: что использовать для Big Data?
https://habr.com/ru/company/otus/blog/567558/
Следующий этап: построение конвейера данных от периферии до аналитики
https://habr.com/ru/company/cloudera/blog/560236/
Интеграционные тесты для Хранилища Данных – Настраиваем Slim CI для DWH
https://habr.com/ru/company/otus/blog/567916/
Платформа обработки данных Билайн
https://habr.com/ru/company/beeline/blog/567508/
Hadoop или MongoDB: что использовать для Big Data?
https://habr.com/ru/company/otus/blog/567558/
Следующий этап: построение конвейера данных от периферии до аналитики
https://habr.com/ru/company/cloudera/blog/560236/
Интеграционные тесты для Хранилища Данных – Настраиваем Slim CI для DWH
https://habr.com/ru/company/otus/blog/567916/
Хабр
Платформа обработки данных Билайн
Весь телеком-бизнес основан на данных, и Билайн не исключение. Данные генерируются как внутри, так и снаружи: в OSS-системах (события на оборудовании, сетевой трафик), в BSS-системах (клиентские...
Forwarded from Все о блокчейн/мозге/space/WEB 3.0 в России и мире
#книгамесяца про «Забывание» от профессора Скотта Смолла, директора исследовательского центра болезни Альцгеймера в Колумбийском университете .
В книге говорится, что до недавнего времени он и большинство других ученых считали, что забывание - это технический сбой нашего мозга.
Но недавние исследования в области нейробиологии, психологии, медицины и информатики говорят о другом. Искажение фактов и деталей в мозге не только полезны, но и психологически необходимы.
Забывчивость нам даёт когнитивный дар, который позволяет адаптироваться в суматохе жизни.
Доктор Смолл утверждает, что забывание позволяет нам адаптироваться и импровизировать лучше. А сон является ключом к удалению посторонней информации.
В книге говорится, что до недавнего времени он и большинство других ученых считали, что забывание - это технический сбой нашего мозга.
Но недавние исследования в области нейробиологии, психологии, медицины и информатики говорят о другом. Искажение фактов и деталей в мозге не только полезны, но и психологически необходимы.
Забывчивость нам даёт когнитивный дар, который позволяет адаптироваться в суматохе жизни.
Доктор Смолл утверждает, что забывание позволяет нам адаптироваться и импровизировать лучше. А сон является ключом к удалению посторонней информации.
небольшая обзорна статья по теме Federated Learning, не менее популярная сейчас тема чем Data Mesh
https://towardsdatascience.com/federated-learning-a-new-ai-business-model-ec6b4141b1bf
https://towardsdatascience.com/federated-learning-a-new-ai-business-model-ec6b4141b1bf
Medium
Federated Learning: A New AI Business Model
Federated learning is not only a promising technology but also a possible brand new AI business model. Indeed, as a consultant, I have…
Тут со мной поделились статьей, еще внимательно не изучил, но беглый просмотр показал, что статью надо постить отдельно, а не в рамках дайждеста.
https://databricks.com/discover/champions-of-data-and-ai/s2-e8-the-critical-job-of-building-a-data-culture
https://databricks.com/discover/champions-of-data-and-ai/s2-e8-the-critical-job-of-building-a-data-culture
Databricks
Champions of Data + AI Episode 8: The Critical Job of Building a Data Culture - Databricks
Culture can make or break organizations. It also plays a vital role in an organization’s ability to become data-driven. In this episode, sit down with not just one but five data leaders in a panel discussion on building data cultures.