Что выведет код?
Anonymous Quiz
10%
Ошибка выполнения
16%
Hello, World одновременно
10%
World, пауза 1 секунда, Hello
65%
Hello, пауза 1 секунда, World
Что такое дескрипторы в Python и зачем они нужны?
Дескриптор — это объект, который управляет доступом к атрибутам класса через методы
✅ Пример:
Дескрипторы используются в свойствах (
Дескриптор — это объект, который управляет доступом к атрибутам класса через методы
get
, set
и delete
. Они позволяют гибко контролировать поведение атрибутов.✅ Пример:
class Descriptor:
def init(self, value=None):
self.value = value
def get(self, instance, owner):
print("Getting value")
return self.value
def set(self, instance, value):
print("Setting value")
self.value = value
class MyClass:
attr = Descriptor()
obj = MyClass()
obj.attr = 42 # Setting value
print(obj.attr) # Getting value → 42
Дескрипторы используются в свойствах (
property
), ORM, логировании доступа и валидации данных. Они помогают гибко управлять состоянием объектов и позволяют писать более чистый код.⚡️ Как работает
✅ Пример:
super()
в Python?super()
позволяет вызывать методы родительского класса, обеспечивая правильное наследование и расширение функционала.✅ Пример:
class Parent:
def greet(self):
return "Hello from Parent"
class Child(Parent):
def greet(self):
return super().greet() + " and Child"
obj = Child()
print(obj.greet()) # "Hello from Parent and Child"
super()
особенно полезен при множественном наследовании, так как помогает вызывать методы родительских классов без явного указания их имен.Зачем нужно ключевое слово
Пример:
yield
в Python?yield
используется для создания генераторов, которые возвращают данные по мере запроса, вместо хранения всего результата в памяти.Пример:
def count_up_to(n):
count = 1
while count <= n:
yield count # Возвращает значение и приостанавливает выполнение
count += 1
for num in count_up_to(5):
print(num)
yield
позволяет приостанавливать и возобновлять выполнение функции, экономя память и упрощая работу с потоками данных.🐍 GIL в Python: как это влияет на многопоточность
Global Interpreter Lock (GIL) — это механизм в CPython, который ограничивает выполнение Python-кода одним потоком за раз, даже на многопроцессорных системах.
🔹 Зачем нужен GIL?
Он предотвращает проблемы с управлением памятью и упрощает работу интерпретатора. Однако из-за него многопоточные программы не могут эффективно использовать несколько ядер процессора.
🔹 Когда GIL мешает?
✅ Решение:
Если нужна настоящая параллельность, используйте многопроцессорность (
Global Interpreter Lock (GIL) — это механизм в CPython, который ограничивает выполнение Python-кода одним потоком за раз, даже на многопроцессорных системах.
🔹 Зачем нужен GIL?
Он предотвращает проблемы с управлением памятью и упрощает работу интерпретатора. Однако из-за него многопоточные программы не могут эффективно использовать несколько ядер процессора.
🔹 Когда GIL мешает?
•
В CPU-интенсивных задачах (например, обработка данных, вычисления) многопоточность не дает прироста производительности.•
В I/O-интенсивных задачах (сетевые запросы, работа с файлами) GIL почти не влияет, так как потоки могут освобождать блокировку во время ожидания операций ввода-вывода.✅ Решение:
Если нужна настоящая параллельность, используйте многопроцессорность (
multiprocessing
), которая запускает отдельные процессы без GIL, или попробуйте альтернативные реализации Python, такие как Jython или PyPy.🖥 Друзья, если вы только начинаете осваивать Python или уже перешли к фреймворкам и сложным библиотекам, вам помогут авторские материалы многолетнего разработчика и преподавателя Python Дмитрия Читалова.
Уже размещены:
✅Основы Python
✅Продвинутый Python
✅Алгоритмы и структуры данных
❗️Сейчас еженедельно выкладываются уроки по Архитектуре и паттернам проектирования
Подписаться можно здесь.
Уже размещены:
✅Основы Python
✅Продвинутый Python
✅Алгоритмы и структуры данных
❗️Сейчас еженедельно выкладываются уроки по Архитектуре и паттернам проектирования
Подписаться можно здесь.
⚙️ Отладка с sys._getframe в Python
Сегодня в коротком формате разберемся с тем, что же творится внутри CPython, когда функции вызывают друг друга: sys._getframe, f_back, f_globals, f_locals, а также создадим свои декораторы.
#Полезное
Сегодня в коротком формате разберемся с тем, что же творится внутри CPython, когда функции вызывают друг друга: sys._getframe, f_back, f_globals, f_locals, а также создадим свои декораторы.
#Полезное
🔥 Mutable vs Immutable в Python
В Python все данные — это объекты, и они делятся на изменяемые (mutable) и неизменяемые (immutable).
🔹 Неизменяемые (immutable): нельзя изменить после создания
✅
🔹 Изменяемые (mutable): можно изменять без создания нового объекта
✅
⚠️ Важный нюанс
Передача изменяемых объектов в функцию может привести к неожиданным изменениям:
✅ Вывод:
В Python все данные — это объекты, и они делятся на изменяемые (mutable) и неизменяемые (immutable).
🔹 Неизменяемые (immutable): нельзя изменить после создания
✅
int
, float
, str
, tuple
, frozenset
x = "hello"
x += " world" # Создается новый объект, а не изменяется старый
🔹 Изменяемые (mutable): можно изменять без создания нового объекта
✅
list
, dict
, set
, bytearray
lst = [1, 2, 3]
lst.append(4) # Список изменяется в той же области памяти
⚠️ Важный нюанс
Передача изменяемых объектов в функцию может привести к неожиданным изменениям:
def modify_list(lst):
lst.append(99) # Изменяет оригинальный список!
my_list = [1, 2, 3]
modify_list(my_list)
print(my_list) # [1, 2, 3, 99]
✅ Вывод:
•
Используйте tuple
, если данные не должны изменяться.•
Будьте осторожны с изменяемыми объектами при передаче в функции.•
Если нужно копирование, используйте .copy()
или deepcopy()
.🔥
🔹
🔹
✅ Используйте
*args
и **kwargs
в Python🔹
*args
— передает позиционные аргументы как кортеж:def add_numbers(*args):
return sum(args)
print(add_numbers(1, 2, 3)) # 6
🔹
**kwargs
— передает именованные аргументы как словарь:def greet(**kwargs):
print(kwargs)
greet(name="Alice", age=25) # {'name': 'Alice', 'age': 25}
✅ Используйте
*args
для списка значений и **kwargs
для гибких параметров!↔️ Разница между
🔹
🔹
🔹 Но для immutable-объектов (например,
✅ Используйте
is
и ==
в Python🔹
==
(равенство) проверяет, равны ли значения объектов:a = [1, 2, 3]
b = [1, 2, 3]
print(a == b) # True (значения одинаковые)
🔹
is
(идентичность) проверяет, указывают ли переменные на один и тот же объект в памяти:print(a is b) # False (разные объекты)
🔹 Но для immutable-объектов (например,
int
, str
, tuple
) Python кеширует значения:x = 256
y = 256
print(x is y) # True (указывают на один объект)
✅ Используйте
==
для сравнения значений и is
для проверки, ссылаются ли переменные на один объект в памяти!⚙️ Как я запускаю 15+ самых разных ИИ на своей машине — open-source, self-hosted, с HTTP-доступом
Показываю, как мой BrainBox запускает генерацию, озвучку и распознавание локально — без боли и зависимости от облаков. Даже если вы не знаете Python.
#Полезное
Показываю, как мой BrainBox запускает генерацию, озвучку и распознавание локально — без боли и зависимости от облаков. Даже если вы не знаете Python.
#Полезное
Что делает
Пример:
Зачем нужно?
⚡️
@property
в Python?@property
превращает метод класса в свойство, позволяя обращаться к нему без скобок.Пример:
class Person:
def init(self, name):
self._name = name
@property
def name(self):
return self._name
p = Person("Alice")
print(p.name) # Alice (как атрибут, но с логикой)
Зачем нужно?
•
Позволяет использовать методы как атрибуты•
Защищает данные от прямого изменения•
Позволяет добавить логику без изменения интерфейса⚡️
@property
делает код чище и безопаснее, улучшая инкапсуляцию!