Книжный куб
11.1K subscribers
2.66K photos
6 videos
3 files
1.96K links
Рекомендации интересных книг, статей и выступлений от Александра Поломодова (@apolomodov), технического директора и эксперта в архитектуре
Download Telegram
DORA 2025 - State of AI-assisted Software Development - Общая информация по отчету (Рубрика #Devops)

Я уже как-то кратко рассказывал про исследование "DORA Research: 2025" в одном из прошлых постов. Тогда я внимательно прочитал отчет, но тогда рассказал про его результаты очень кратко. А сейчас мне потребовался более подробный разбор для нашего исследования влияния AI на инженерную культуру и я решил расписать его и для своих подписчиков.

Отчет “State of AI-assisted Software Development 2025” подготовлен исследовательской командой программы DORA (DevOps Research and Assessment), что является частью Google Cloud. Ведущими авторами стали специалисты Google Cloud при участии приглашенных экспертов. Партнерами исследования были IT Revolution, GitHub, GitLab, SkillBench и Workhelix. Кроме того инициативу поддержал ряд спонсоров (Swarmia, Thoughtworks, Deloitte, Atlassian и др.).

В рамках исследования был проведен глобальный опрос почти 5 000 технических специалистов из разных стран и компаний. Респонденты включали инженеров-разработчиков, DevOps/SRE, тимлидов, продакт-менеджеров. Опрос охватил широкий спектр тем: от степени и способов использования ИИ (какие инструменты и LLM-модели применяются, для каких задач, сколько времени тратится, как часто доверяют советам ИИ) до характеристик команд и процессов (архитектура и платформы разработки, культура обучения, Value Stream Management, практики контроля версий, размер батчей изменений и т.п.). Также оценивались результаты работы команд: классические метрики DORA (например, скорость доставки и стабильность выпуска ПО), качество кода, продуктивность разработчиков, частота фрикций в работе и выгорание сотрудников. Для углубления анализа исследователи собрали и более 100 часов качественных данных – интервью и разборов практик, чтобы дополнить цифры живыми инсайтами.

Интересно, что полгода назад я рассказывал про то, как работает методология DORA для составления таких отчетов, но для отчета 2025 авторы отдельно описали "Measurement Framework" и то, как это можно использовать для управления изменениями в своей компании. Если же говорить про самих ребят и их отчет DORA 2025, то обработка данных сочетала статистические и аналитические методы. Масштабный опрос позволил провести корреляционный анализ и регрессионные модели, выявляя взаимосвязи между практиками и итоговыми показателями эффективности.

В итоге, получился отчет состоящий из следующих частей
- "Beyond the tools": обсуждается, почему успешное внедрение ИИ – это системная задача, а не просто выбор инструмента.
- Анализ текущего состояния AI-assisted разработки: представлены результаты опроса об уровне адаптации ИИ в индустрии, о практиках использования и влиянии на ключевые показатели.
- "Understanding your teams: 7 profiles": в этом разделе DORA представляет обнаруженные семь архетипов команд разработки
- "DORA AI Capabilities Model": центральная глава, вводящая новую модель способностей для успеха с ИИ. Здесь подробно перечисляются семь технических и культурных практик (системных факторов), которые статистически усиливают положительное влияние ИИ на эффективность команд
- "Directing AI’s potential": раздел, посвященный тому, как направить усилия по внедрению ИИ в правильное русло. В частности, разбирается роль Value Stream Management (VSM) как механизма, позволяющего конвертировать локальные улучшения от ИИ в конечный результат для бизнеса
- Рекомендации и выводы для лидеров: заключительная часть отчета переводит результаты в практическую плоскость. Здесь дается “дорожная карта” для внедрения ИИ – на каких направлениях сфокусироваться в первую очередь. В отчете прямо говорится, что руководители должны рассматривать внедрение AI как трансформацию организации, а не просто ИТ-проект

P.S.
В комментариях приложу сам PDF с отчетом.

#AI #Software #Engineering #Management #Whitepaper
9👍3🔥2
T-Sync Conf (Рубрика #Software)

Приходите 7 февраля 2026 года на нашу большую конференцию T-Sync, точка синхронизации технологий и тех, кто их использует. Здесь будет много про практику, взаимодействие и живые системы. На этой конфе у нас будет стенд, где мы покажем результаты нашего исследования влияния AI на инженерную культуру. А вообще на конфе будет 8 технологических контуров из всех инженерных сфер: AI, Data, R&D, Security, UX/UI, Productivity, Observability, Platfrom. А вообще, эта конференция будет отличаться по формату от большинства конференций - здесь не будет скучных докладов (и не только скучных), но можно будет пообщаться и позадавать вопросы инженерам, которые реально делают те системы, которые работают у нас в проде, исследователям, что двигают нас вперед, а также техническим руководителям, которые не мешают работать остальным (а по мере своих сил стараются помогать).

#AI #PlatformEngineering #Engineering #Software #Processes #Productivity #Conference
7👍5🔥3
YaC 2025 AI Edition (Рубрика #AI)

В очередной YaC (Yet another Conference) Яндекс демонстрирует переход искусственного интеллекта из статуса технологии для энтузиастов в массовый инструмент для повседневных задач. Фильм внедряет в головы зрителя людей мысль о том, что ИИ должен стать "привычкой", помогая решать реальные проблемы без необходимости разбираться в технических деталях вроде "претрейна" и "инференса". По ходу фильма мы видим как Алиса AI превращается в "эмпатичного ассистента", который понимает контекст пользователя и встраивается во все сервисы экосистемы - от браузера до роботов-доставщиков.

Если говорить про целевую аудиторию, то фильм нацелен широко
- Массовые пользователи: родители (упражнения для детей с логопедом), туристы (сборы снаряжения для треккинга), покупатели (поиск товаров со скидками до 30%)
- Профессионалы: юристы (анализ 100-страничных законопроектов), врачи (диагностика по МРТ), предприниматели (рабочие задачи через Алису Про)
- Tech-энтузиасты: любители промптинга (платформа Промптхаб), разработчики (70% сотрудников Яндекса используют ИИ ежедневно)

Фильм длится чуть больше часа и разделён на шесть тематических блоков с естественными переходами между "железом", софтом и стратегией:
1️⃣ Алиса AI: от чата до экосистемы
- Обогащённые ответы с картами, картинками, рецептами
- Примеры из жизни: турист собирает рюкзак для Непала и сокращает вес с 13 до 7–8 кг благодаря анализу Алисы; родитель генерирует логопедические загадки с буквой "Р"
- Креативная генерация: оживление чёрно-белых фото вызывает эмоции у пользователей

2️⃣ Промпты и агенты
- Промптхаб - платформа для обмена шаблонами
- Агенты - система на нейросетях, автоматизирующая цепочки действий (пример агента "Найти дешевле")
- НейроГусь - внутренняя премия Яндекса за ИИ-проекты

3️⃣ Интеграция в сервисы: Маркет как пример
- Поиск по естественным запросам: "Собери всё для приготовления ростбифа" → Алиса предлагает термометр, доски, ножи, уточняет бюджет
- Мультимодальный поиск: фото человека → анализ одежды → подбор «похожего лука» с учётом персональных предпочтений

4️⃣ Алиса Про и бизнес-кейсы
- Алиса Про: для корпоративных задач (интеграция в почту, диск, вики)
- Нейроюрист: анализ законопроектов, претензий, договоров. 75% юристов Яндекса используют инструмент, экономя 2 часа в неделю на 10 запросов.
- Кейс с ПВЗ Яндекс Маркета: новые сотрудники решают вопросы о возвратах и габаритах через Алису Про

5️⃣ ИИ + "железо"
- Устройства: наушники Дропс (запись заметок голосом), диктофон с суммаризацией встреч, IP-камера (сценарии: "Если кот на столе - запусти пылесос")
- Роботы-доставщики: 20 000 роверов к 2027 году в городах России (запуск в СПб, Казани, Иннополисе). Завод на 1500 роботов/месяц, каждый проходит 50 тестов и калибровку за 20 минут. Нейросети управляют навигацией, обходят препятствия в реальном времени
- Автономный грузовик: лидары, камеры, ИИ для манёвров (система обучалась на данных водителей)

6️⃣ Медицина и будущее
- МРТ-анализ для новорождённых: нейросеть определяет объёмы мозга и вещества для выявления рисков ДЦП, сокращая время анализа с дней до минут
- Будущее работы: ИИ не заменяет людей, а создаёт новые места (экономит рутину, усиливает креатив). 70% сотрудников Яндекса используют ИИ ежедневно (рост с 30% в 2023)

В общем, фильм позиционирует Яндекс как компанию, которая первой в России превратила ИИ из хайпа в утилитарный инструмент для миллионов - от мелкобытовых задач (сборка рюкзака) до критически важных (медицинская диагностика)

#AI #Software #Engineering #Economics #Software #Management #Leadership
🔥3🦄322👎2
[1/3] The Pragmatic Engineer 2025 Survey (Рубрика #DevEx)

Добрался до результатов летнего исследования Гергели Ороша (Gergely Orosz), известного инженера и автора популярной рассылки "The Pragmatic Engineer", одного из самых влиятельных источников аналитики в сфере технологий. Этот опрос проводился среди читателей рассылки "The Pragmatic Engineer" в апреле–мае 2025, причем в нем приняли участие 3k инженеров. Респондентами преимущественно являются инженеры-разработчики софта причем из компаний всех масштабов (от стартапа до бигтехов), причем так получилось, что половина работала в мелких и половина в крупных компаниях. Следует отметить, что выборка не случайна, а основана на подписчиках технического блога, поэтому она может смещаться в сторону продуктовых IT-компаний. Например, среди читателей заметно выше доля пользователей AWS и ниже - Azure по сравнению с традиционными корпоративными сегментами. В целом же охват опроса по ролям и компаниям очень широк, что даёт основание доверять тенденциям, выявленным в данных.

Результаты Гергели оформил в трех частях, каждая из которых посвящена определённым категориям инструментов разработки. Вот эти три части

1️⃣ Часть
Демография респондентов; использование AI-инструментов; наиболее используемые и любимые языки программирования; рейтинг самых нелюбимых и самых любимых инструментов; среды разработки (IDE) и терминалы; системы контроля версий и CI/CD; облачные платформы (IaaS/PaaS)
2️⃣ Часть
Наиболее часто упоминаемые инструменты (лидируют JIRA, VS Code и AWS); средства управления проектами; инструменты коммуникации и совместной работы (Slack, MS Teams, Confluence, Miro, Figma); базы данных и хранилища (PostgreSQL и мн. др.); бекенд-инфраструктура (Docker, Kubernetes, Terraform, облачные сервисы); балансировщики нагрузки; а также
3️⃣ Часть
Средства наблюдаемости, мониторинга и логирования; инструменты для дежурств и управления инцидентами; системы feature flags, аналитики и экспериментов; инструменты фронтенд- и мобильной разработки; различные утилиты для разработчиков; собственные (custom) внутренние инструменты команд; и нишевые любимые инструменты энтузиастов

Среди ключевых результатов можно выделить следующие

🤖 Широкое внедрение ИИ-инструментов
85% опрошенных инженеров используют в работе хотя бы один инструмент с элементами AI, например кодового помощника. Каждый второй респондент применяет GitHub Copilot – этот AI-помощник для программирования стал самым популярным средством из своего класса. Лишь около 4% принципиально не пользуются AI (по причинам корпоративного запрета, неэффективности или этических убеждений), что подчёркивает массовое проникновение данных технологий в разработку.

🐍 Популярные языки программирования
TypeScript вышел на первое место по частоте использования среди языков разработки (ожидаемо, учитывая его применение и в фронтенде, и в бекенде). Широко распространены также Python, JavaScript, Java, C# и другие языки, при этом все основные языковые экосистемы оцениваются разработчиками положительно - ни один язык не получил значимого перевеса негатива в отзывах. Это говорит о зрелости современных языков: откровенно "плохие" решения попросту не становятся массовыми. В топ-10 самых любимых языков неожиданно вошёл даже нишевый Elixir, а фреймворк Ruby on Rails оказался одновременно 5-м по использованию и 3-м по любви, что подчёркивает лояльность его сообщества (чтобы понять любовь к нему можно глянуть документалку про RoR)

Продолжение в следующем посте.

#AI #ML #PlatformEngineering #Software #Architecture #Processes #DevEx #Devops
Please open Telegram to view this post
VIEW IN TELEGRAM
4🔥21
Применение AI и LLM в разработке и управлении (Рубрика #AI)

Посмотрел на неделе выступление Александра Лукьянченко с конференции AvitoTechConf 2025, которую я посетил очно (но провел большую часть времени не за просмотром докладов, а общаясь со знакомыми и обсуждая примерно те же темы, но более открыто). Если же возвращаться к докладу Саши, то он поделился цифрами о том, как AI реально работает в процессах разработки внутри Авито. Сам Саша руководит разработкой PaaS внутри компании и его команда отвечает за эффективность 2000+ инженеров, внутренние инструменты, облако и SDLC.

Основные тезисы доклада примерно такие

⌨️Кодинг - это не вся работа
Непосредственное написание кода занимает всего 20–40% времени инженера. Остальное - это коммуникация, дизайн систем, ревью и "археология" (разбор чужого кода). AI должен помогать именно здесь, а не только дописывать строки. Есть и другие сценарии, например
🗺 Авто-картирование архитектуры
В микросервисной архитектуре сложно понять, кто за что отвечает. В Avito использовали LLM, чтобы проанализировать код, API и README всех сервисов и разложить их по доменам.
Результат: Автоматика совпала с ручной разметкой экспертов на 80%. Сэкономлено ~200 человеко-дней ручной работы архитекторов.
☠️ Анализ постмортемов
Скормили LLM базу из 800+ инцидентов (postmortems). Модель нашла 22 системных паттерна проблем, которые не видели люди, и предложила сценарии для Chaos Engineering. Это позволило закрыть >1000 потенциальных уязвимостей.
⚙️ Эволюция инструментов
Ребята в индустрии переходят от фазы Copilot (автодополнение) к фазе Agents (автономное выполнение задач). В топе сейчас инструменты вроде Cline, Roo Code и режимы агентов в IDE, которые могут сами "ходить" по проекту и править файлы.

Что это значит для индустрии
1. Ощущение продуктивности обманчиво. Инженеры часто чувствуют, что стали работать быстрее с AI, но метрики говорят об обратном (особенно исследование METR на 16 инженеров, которое я разбирал). Если AI пишет много кода, который потом нужно долго дебажить - это не ускорение, а генерация техдолга.
2. Greenfield vs Brownfield. AI отлично бустит старт новых проектов (до 30-40%), но на старых, сложных легаси-проектах ("brownfield") прирост продуктивности падает до 0–10%, а иногда становится отрицательным из-за rework.
3. Сдвиг фокуса. Главная ценность AI сейчас не в написании кода, а в снижении когнитивной нагрузки (быстрый поиск по доке, саммари бесконечных тредов в Slack, объяснение легаси).

P.S.
Саша делал отсылку к исследованию Stanford на 120k инженеров. Недавно Егор Денисов-Бланш (Yegor Denisov-Blanch) рассказывал новый доклад "Can you prove AI ROI in Software Engineering?" на эту тему на AI Engineer кофне и я его уже разбирал, там много интересного, рекомендую к просмотру.

#AI #DevOps #Engineering #Management #Leadership #Software #Architecture #SRE
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍158🔥3👏1🤩1
[2/3] The Pragmatic Engineer 2025 Survey (Рубрика #DevEx)

Продолжая рассказ про опрос Гергели, рассмотрим оставшиеся темы

❤‍🔥 Инструменты разработки: любовь и ненависть
Список самых часто используемых инструментов возглавил неожиданно JIRA (чаще даже VS Code или AWS). Парадоксально, но JIRA же стал и самым ненавидимым инструментом (разработчики не любят JIRA за медлительность и громоздкость), а вот более лёгкий конкурент, Linear, напротив, попал в число самых любимых инструментов (№4) и рассматривается инженерами как желанная замена JIRA. В целом, два этих инструмента сейчас доминируют в управлении проектами (вместе 75% упоминаний project management инструментов). JIRA в крупных компаниях, а Linear в малых.

Командная коммуникация и сотрудничество
Среди средств коммуникации лидируют проверенные решения: Slack - самый используемый чат для разработки, а Microsoft Teams - наиболее распространён для видеозвонков. Для хранения документации чаще всего применяют Confluence, для совместного brainstorming - онлайн-доску Miro, а для дизайна интерфейсов - Figma. Примечательно, что Figma упоминалась разработчиками даже чаще, чем такой профильный инструмент, как K8s. Это свидетельствует о глубоком вовлечении команд разработки в процесс проектирования UX/UI и тесной междисциплинарной работе с дизайнерами.

😶‍🌫️ Облачные платформы

В облачной инфраструктуре опрос подтвердил безусловное лидерство Amazon Web Services (AWS) - эту платформу используют ~44% респондентов, тогда как у ближайшего преследователя, Microsoft Azure, ~30%. Доля Google Cloud Platform составляет оставшиеся ~26%.

🐘 Инфраструктура и базы данных
Практически повсеместно используются контейнеры Docker и оркестратор K8s - де-факто стандарт развёртывания приложений. Для управления инфраструктурой как кодом лидирует Terraform. Кроме того, широко востребованы управляемые облачные сервисы (например, от AWS) для типовых задач backend. Что касается хранения данных, опрос показал безоговорочную популярность PostgreSQL (1/3 респондентов упоминало ее). Тем не менее, выбор технологий хранения невероятно разнообразен: профессионалы упомянули десятки разных баз данных (SQL, NoSQL, NewSQL, специализированные хранилища и т. д.). Это говорит о том, что современный стек данных очень неоднороден, и команды подбирают БД строго под свои задачи.

♾️ Мониторинг и надежность (DevOps)
В сфере observability данных наиболее популярны платформы Datadog, Grafana и Sentry - каждая из них используется примерно у 15-25% участников опроса. Эти инструменты (соответственно, облачный сервис мониторинга, open-source система дашбордов и сервис отслеживания ошибок) стали привычной частью инфраструктуры многих команд. Для оповещений и реагирования на инциденты подавляющее число инженеров применяют классические решения PagerDuty и OpsGenie.

📱 Фронтенд и мобильные технологии
Здесь наблюдается большая консолидация вокруг нескольких фреймворков. React практически без конкурентов доминирует как основной фронтенд-фреймворк (упоминается большинством веб-разработчиков), а Next.js стал самым популярным "мета"-фреймворком для React-приложений. Для мобильной разработки кроссплатформенно лидирует React Native - опрошенные отмечают его гораздо чаще любых альтернатив. Иными словами, стек фронтенда в 2025 году у большинства команд выглядит схоже. На бекенде разброс решений больше, но и там многие используют единый стек на TypeScript/Node.js либо популярные фреймворки вроде .NET и Spring.

🎌 Feature flags и внутренние инструменты
Практика feature flags и a/b тестирования прочно вошла в жизнь: для этого многие используют готовые сервисы, главным из которых является LaunchDarkly. Тем не менее, опрос показал, что весьма часто компании создают собственные системы фичефлагов, платформы экспериментов и кастомные конвейеры деплоя. Это может указывать на то, что существующие продукты не полностью покрывают нужды команд, либо на желание сэкономить на лицензиях, либо на требования безопасности.

Выводы из исследования в финальном посте.

#AI #ML #PlatformEngineering #Software #Architecture #Processes #DevEx #Devops
Please open Telegram to view this post
VIEW IN TELEGRAM
5🔥4👍3
[3/3] The Pragmatic Engineer 2025 Survey (Рубрика #DevEx)

Если финализировать разбор этого отчета Гергели (начало в 1 и 2), то видны следующие ключевые тренды

1️⃣ Инструменты с искусственным интеллектом из разряда эксперимента перешли в категорию повседневных - подавляющее большинство разработчиков теперь пользуется AI-помощниками. Это означает, что продуктивность инженеров всё больше будет зависеть от интеграции AI в их рабочие процессы, а компании должны учитывать данную тенденцию при выборе инструментов.
2️⃣ Технологический стек продолжает унифицироваться вокруг лучших решений: TypeScript и React стали фактическим стандартом веб-разработки, Kubernetes – стандартом развёртывания, GitHub - стандартом хостинга кода и т. д. Популярные языки и фреймворки достигли такой зрелости, что разработчики в целом ими довольны и не испытывают острой необходимости срочно искать им замену
3️⃣ Позиции крупных экосистемных игроков остаются сильны. Так, Microsoft контролирует заметную часть инструментов разработчика (4 из 15 самых распространённых, включая VS Code, GitHub и Azure DevOps), Amazon - облачную инфраструктуру, Atlassian - управление проектами и т.д. Для индустрии это означает стабильность базового инструментария и продолжение инвестиций со стороны гигантов рынка.

Одновременно опрос показал и точки напряжения, которые можно рассматривать как ниши для инноваций.
Разработчики явно фрустрированы от "тяжеловесных" корпоративных решений – яркий пример тому JIRA, которую вынужденно используют повсеместно, но называют худшим инструментом. Запрос на более продуктивные, быстрые и удобные инструменты налицо, что подтверждается успехом конкурента Linear и других облегённых аналогов. Когда две системы (JIRA и Linear) охватывают порядка 75% всех командных процессов планирования, рынок фактически монополизирован парой игроков - и в то же время открывается возможность для новых продуктов, способных потеснить устоявшиеся, но нелюбимые решения.

Похожая ситуация складывается и в других категориях: например, появление специализированных стартапов в области oncall, фичефлагов, observability говорит о том, что существующие крупные продукты удовлетворяют не всех. Многие компании продолжают строить критически важные инструменты "in-house", и это сигнал вендорам о незакрытых потребностях. С другой стороны, столь богатый и разнообразный ландшафт инструментов - благо для инженеров, но и вызов для технологических лидеров.

В 2025 году перед командами стоит задача грамотной интеграции множества инструментов: от AI-помощников до облачных сервисов, от мониторинга до экспериментальных платформ. Те компании, которые сумеют подобрать оптимальный набор технологий и процессов, получают конкурентное преимущество в эффективности разработки и скорости вывода продукта на рынок.

#AI #ML #PlatformEngineering #Software #Architecture #Processes #DevEx #Devops
👍43🔥2
[1/2] The state of AI in 2025. Agents, innovation, and transformation - Общие результаты исследования (Рубрика #AI)

Изучил интересный отчет от ноября 2025 года, что был подготовлен экспертами подразделения "QuantumBlack, AI by McKinsey" во главе с группой старших партнеров McKinsey. Мне было интересно сравнить его результаты с совместным отчетом "Яков и партнеры" (ex-McKinsey) и Яндекса, про которое я рассказывал раньше.

Исследование глобально McKinsey основано на онлайн-опросе, проведенном с 25 июня по 29 июля 2025 года. В опросе приняли участие 1 993 респондента из 105 стран, представляющие все основные регионы, отрасли, масштабы компаний, функциональные направления и уровни должностей. Около 38% участников работают в компаниях с выручкой более $1 млрд, а данные были взвешены по доле стран в глобальном ВВП для устранения перекосов.

Ключевые определения, которые используются по всему отчету и которые стоит знать при чтении
1) "Регулярное использование ИИ" определяется как применение ИИ хотя бы в одной бизнес-функции организации. Степень внедрения оценивалась по этапам
- Экспериментирование
- Пилотное внедрение
- Масштабирование (развертывание решений в масштабах компании)
- Полное масштабирование по всему предприятию
2) Авторы определили "агентные системы ИИ" (AI agents) как системы на основе foundation models, способные автономно действовать в реальном мире, планируя и выполняя многошаговые задачи
3) Под "AI high performers" (высокорезультативные компании в сфере ИИ) понимается небольшой сегмент (~6% опрошенных организаций), где благодаря ИИ достигается значимый эффект: более 5% совокупного EBIT компании и "существенная" бизнес-ценность напрямую обусловлены использованием ИИ. Именно практика этих лидеров рассматривается отдельно.

Executive summary приводится в самом начале отчета и выглядит так

1️⃣ Большинство организаций всё ещё на этапе экспериментов или пилотов
Почти две трети респондентов говорят, что их компании пока не начали масштабировать ИИ на уровень всей организации (enterprise-wide).
2️⃣ Высокий интерес к ИИ-агентам
62% участников опроса отмечают, что их организации как минимум экспериментируют с ИИ-агентами.
3️⃣ Есть позитивные ранние сигналы влияния ИИ, но не на уровне всего бизнеса
Респонденты видят эффект в конкретных сценариях - снижение затрат и рост выручки; 64% считают, что ИИ помогает инновациям. Однако только 39% фиксируют влияние на EBIT на уровне компании в целом.
4️⃣ Лидеры по результатам используют ИИ не только для эффективности, но и для роста/инноваций
80% респондентов говорят, что их компании ставят повышение эффективности целью ИИ-инициатив. Но те, кто получает от ИИ максимальную ценность, часто добавляют цели роста или инноваций (а не ограничиваются срезанием затрат).
5️⃣ Перепроектирование процессов - ключевой фактор успеха
Половина "высокоэффективных" компаний планирует использовать ИИ для трансформации бизнеса, и большинство из них уже перерабатывают (redesign) рабочие процессы и цепочки выполнения задач.
6️⃣ Разные ожидания по влиянию на занятость
Оценки респондентов по тому, как ИИ повлияет на численность персонала в ближайший год, различаются: 32% ждут сокращения, 43% - без изменений, 13% - роста.

В продолжении я расскажу про стратегии высоко-эффективных менеджеров команд, которые авторы отчета используют в качестве golden image или образца для подрожания, которому стоит следовать тем, кто еще не готов отчитаться об эффекте в 5% совокупного EBIT.

#Engineering #AI #Metrics #Software #Productivity #Economics #Whitepaper
7👍5🔥4
[2/2] The state of AI in 2025. Agents, innovation, and transformation - Стратегии высокоэффективных компаний (Рубрика #AI)

Заканчивая разбор этого отчета от McKinsey, я не смог пройти мимо самой интересной части исследования - сравнения обычных компаний с высокоэффективными 6% организаций, которые добились заметного влияния ИИ на бизнес. Эти лидеры разительно отличаются подходом. Исследователи McKinsey определяют их по двум критериям: >5% EBIT от ИИ и подтвержденная "значимая" ценность от использования ИИ. Авторы отчета используют эти компании в качестве golden image или образца для подрожания, которому стоит следовать тем, кто еще не готов отчитаться об эффекте в 5% совокупного EBIT.

Ниже расписаны отличия AI-стохановцев от остальных компаний

1️⃣ Лидеры ставят перед ИИ амбициозные цели
Половина таких компаний заявляет, что намерена с помощью ИИ трансформировать бизнес, а не просто улучшить эффективность. По опросу, они в 3+ раза чаще, чем остальные, нацелены на коренное переосмысление своих операций посредством ИИ. Эти компании воспринимают ИИ не как инструмент, а как новый "операционный механизм" организации.

2️⃣ High performers перестраивают рабочие процессы под ИИ

Они почти в 3 раза чаще других заявляют, что радикально перепроектировали отдельные рабочие потоки при внедрении ИИ. Это подтверждает статистика: фундаментальный redesign процессов - один из самых влиятельных факторов успеха (по результатам регрессионного анализа). Проще говоря, компании-лидеры не ограничиваются автоматизацией отдельных задач, а переосмысливают последовательность действий, роли людей и машин, и встраивают ИИ в сердце этих процессов. Такой подход требует больше усилий, но и приносит качественно иной уровень эффекта.

3️⃣ Лидеры распространяют ИИ шире и быстрее

Они применяют ИИ гораздо в большем числе функций и быстрее продвигаются в масштабировании пилотов. В большинстве функций high performers уже используют ИИ, а по работе с агентами они впереди других: в каждой бизнес-функции лидеры минимум втрое чаще продвинулись до стадии масштабирования агентов. Иначе говоря, если новая технология появляется, топ-6% стараются сразу внедрить ее широко.

4️⃣ Прямая отвественность топ-менеджмента за AI повестку

В таких компаниях в 3 раза чаще сильнее выражено согласие с тем, что их высшие руководители демонстрируют приверженность инициативам в области ИИ (берут на себя ответственность, лично продвигают использование ИИ). Лидеры не просто спонсируют, но и активно участвуют. Без этого культурного сдвига масштабные изменения трудно осуществить. Как отмечают авторы, культура и лидерство фактически становятся главным защитным барьером (moat) для таких компаний, отличая их от конкурентов

5️⃣ High performers больше инвестируют и системно подходят к развитию ИИ-способностей
Более одной трети лидеров тратят свыше 20% всего цифрового бюджета на ИИ - это почти в 5 раз чаще, чем остальные компании. Около 75% high performers уже находятся на стадии масштабирования ИИ или полностью масштабировали его, тогда как среди остальных этого достигли только 33%. Они также активнее нанимают специалистов по ИИ и закрывают ключевые пробелы в талантах и данных. Все высокоэффективные организации внедряют комплекс практик по шести измерениям (стратегия, таланты, операционная модель, технология, данные, внедрение и масштабирование). Например, лидеры чаще устанавливают чёткие процессы проверки вывода моделей человеком (чтобы контролировать качество), встроили ИИ-инструменты в основные бизнес-процессы и отслеживают KPI для ИИ-решений. Такая скрупулезность во внедрении обеспечивает им преимущество.

Ну и дальше, чтобы додавить всех не high performers эффектом FOMO (Fear of missing opportunity) надо добавить вывод, что топ-6% компаний обращают ИИ в конкурентное преимущество через рост, инновации и организационную трансформацию, тогда как многие другие застряли на уровне локальных улучшений. Это ведет к разрыву, где малая группа компаний уже сейчас переписывает правила работы, а остальные рискуют отстать

#Engineering #AI #Metrics #Software #Productivity #Economics #Whitepaper
6🔥3🙏3
Amp Code: Next generation AI Coding (Рубрика #AI)

Посмотрел интересный доклад Beyang Liu, CTO Sourcegraph, о новом редакторе Amp Code, в котором автор говорит о том, что это не просто "еще один Copilot", а попытка фундаментально изменить то, как мы взаимодействуем с AI в разработке. Если коротко: по мнению автора мы переходим от фазы "AI пишет текст" к фазе "AI замыкает цикл разработки". Сам Beyang Liu закончил Стэнфорд, а также успел поработать в Palantir и Google. Известен как создатель Sourcegraph (движок поиска по коду) и Cody (один из первых AI-ассистентов с контекстом кодовой базы). Он верит, что главное в AI-кодинге - это не генерация токенов, а доступ к графу знаний кода и runtime-окружению.

Основные тезисы доклада следующие

1️⃣ Смерть "Copilot-парадигмы"
Традиционные AI-ассистенты (GitHub Copilot, ранний Cody) работают как "умный автокомплит". Они предсказывают следующий токен, но не знают, работает ли этот код. Beyang называет это "Fire and Forget": AI выдал код, а разгребать ошибки компиляции - тебе.

2️⃣ Agentic Loop

Amp Code строит работу вокруг цикла OODA (Observe-Orient-Decide-Act)
- AI пишет код
- Сам запускает линтер/компилятор/тесты
- Видит ошибку (например, TypeError)
- Исправляет её без участия человека.
- Повторяет, пока не заработает.

3️⃣ Контекст - это не только текст

Просто засунуть 100 файлов в контекстное окно (даже на 1M токенов) - недостаточно. Amp использует LSP (Language Server Protocol) и реальные данные из runtime, чтобы понимать структуру проекта так же, как её понимает IDE, а не просто как набор символов.

4️⃣ Режим "Review Agent"

В Amp встроен отдельный агент-ревьюер. Перед тем как применить изменения, он проводит Code Review: ищет баги, проверяет стиль и безопасность, имитируя процесс PR-ревью в команде.

🚀 Что это значит для разработки?
- Сдвиг скиллсета: От "быстрого набора кода" мы переходим к управлению агентами. Ваша задача - четко сформулировать намерение (Intent) и архитектуру, а реализацию (Implementation) и отладку берет на себя тул.
- Меньше Context Switching: Вам не нужно переключаться между редактором и терминалом, чтобы проверить, работает ли код, который выдал AI. Агент делает это фоном.
- Unix-way: Beyang подчеркивает, что Amp доступен и как VS Code extension, и как CLI-инструмент. Это возвращение к корням: мощные инструменты, которые можно скриптовать и встраивать в пайплайны.

В докладе и документации Amp, Beyang опирается на следующие концепции и материалы:
1. Agentic Workflows & Scaling Laws
Автор ссылается на то, что качество кода растет не линейно от размера модели, а скачкообразно при использовании agentic loops. Это подтверждается результатами бенчмарка SWE-bench, где агенты, умеющие запускать код, радикально обходят простые LLM. Подробнее про концепцию можно почитать у Andrew Ng
2. Sourcegraph’s "Big Code" Intelligence
База Amp - это технологии анализа графа кода (SCIP), которые Sourcegraph разрабатывает годами.
3. LSP как источник истины
Тезис о том, что LLM нужны структурированные данные от компилятора, а не просто текст. Это отсылка к Language Server Protocol, был разработан компанией Microsoft для своего редактора кода VS Code, но стал открытым стандартом и теперь активно развивается совместно с Red Hat и Codenvy, а сам проект размещен на GitHub, что позволяет использовать его в разных редакторах и для множества языков программировани

#AI #Software #Engineering #Architecture #Agents #ML #SystemDesign
Please open Telegram to view this post
VIEW IN TELEGRAM
18🔥53😁1
The Human Cloud (Экономика удалёнки) (Рубрика #Economics)

Прочитал книгу "The Human Cloud" еще из тех времен (21 года), когда был еще Sber Cloud, а не Cloud.ru, и их название красуется на обложке - ведь ребята помогли в издании этой книги. Если же говорить про книгу, то главной темой является грядущее преобразование мира труда под влиянием трех факторов:
- Развития технологий удалённой работы
- Взрывного роста фриланс-экономики (гиг-экономики)
- Внедрения автоматизации/искусственного интеллекта (и это было еще до chatgpt момента)
Авторы вводят понятие «Human Cloud» («человеческое облако»), под которым понимается глобальный пул талантов-фрилансеров, доступных через цифровые платформы по принципу облачного сервиса. По мнению Моттолы и Коутни, традиционная офисная модель устарела: современные средства связи (почта, видеосвязь, облачные хранилища, менеджеры задач) позволяют эффективно работать из любой точки мира. Компании всё чаще предпочитают нанимать специалистов под конкретные проекты, а не держать штат, – поэтому полноценная занятость в одном офисе перестает быть нормой. Интересно, что сейчас удаленка уже не в моде, фриланс становится вынужденным из-за сокращений, а AI уже не просто автоматизирует рутинные операции (как много изменилось за 5 лет, что прошли с написания книги).

Но в своей книги авторы оптимистичны - они говорят, что эти три фактора дают новые возможности и работникам, и работодателям. . Они перечисляют ряд ключевых идей и советов:

- Удалённая фриланс-модель повышает эффективность
Индивидуальные исполнители теперь способны выполнять проекты, на которые раньше требовались ресурсы большой корпорации. Благодаря облачным инструментам один талантливый специалист может достучаться до глобальных заказчиков и работать с ними напрямую, без посредников. Для профессионалов это означает больше влияния и свободы в работе.
- Полноценная занятость больше не гарант стабильности
Парадоксально, но авторы отмечают, что многие во время пандемии убедились: постоянная должность не так надёжна, как считалось. Фриланс же может дать стабильный доход, если у человека востребованные навыки. Технологии делают переход к независимой работе проще – от онлайн-платформ поиска клиентов до доступных инструментов разработки, дизайна, аналитики и т.д.
- Главное – результат, а не процесс
В новой модели успех определяют не отсиженные часы и офисная политика, а конкретные результаты (outcomes). Фрилансер ценится за выполненный проект и качество работы, поэтому должен сосредоточиться на своих лучших профессиональных навыках. Эта ориентация на результат, по мнению авторов, сделает и компании эффективнее
- «Human Cloud» + ИИ = будущее работы
Помимо человеческого облака фрилансеров, авторы вводят понятие «Machine Cloud» – условно, облако машинного интеллекта. Речь о том, что автоматизация и ИИ дополняют человеческий труд, беря на себя рутинные или трудоёмкие задачи. В книге подчёркивается: хотя звучат страхи, что «роботы отнимут работу», реальность не столь мрачна. Новые технологии скорее создают новые возможности, а не тотальную безработицу. Моттола и Коутни призывают не бояться, а использовать ИИ-инструменты, чтобы повысить свою продуктивность и ценность на рынке труда.

Основной посыл книги оптимистичный, но если посмотреть на gig-экономику сегодня, то видно, что она в реальности столкнулась и с серьезными проблемами: социальная незащищенность работников, отсутствие стабильности в работе, регуляторные ограничения (когда gig-работников приравнивают к штатным сотрудникам при определенных условиях). Такие тенденции ставят под вопрос неограниченный рост «человеческого облака» в том виде, как его описывает книга. Компании уже не смогут бесконечно экономить за счёт обхода трудового законодательства – возможно, им придётся находить баланс между гибкостью и соцгарантиями.

#Economics #AI #Management #Leadership #Startup #Engineering #Future
👍106🔥2
[1/2] Autonomy Is All You Need (Рубрика #Agents)

Посмотрел интересный доклад Michele Catasta, president & head of AI в Replit, который он рассказывал месяц назад на конференции AI Engineer. До этого Michele работал head of applied research в Google, а сейчас отвечает за всю AI‑стратегию Replit, который собирает прототипы приложений “с нуля до демки” за минуты. Вот основные тезисы его выступления

1️⃣ Автономия — главный измеримый прогресс в агентах
Кодовые ассистенты можно оценивать не только по качеству подсказок, а по тому, насколько далеко агент доходит сам, без человека “на ручнике”. Для нетехнических пользователей это вообще единственный смысл: либо агент способен сам довести задачу до результата, либо продукт для них бесполезен. Отсюда “north star”: степень автономии — ключевая метрика развития AI‑агентов в разработке, а не просто качество одного запроса.

2️⃣ Две фундаментальные способности для настоящей автономии
Michele выделяет два базовых кирпича автономного агента в разработке:

1. Автоматическое тестирование
Агент должен уметь сам проверять себя — через юнит‑тесты, интеграционные проверки, e2e‑сценарии, health‑чеки и т.д. Без автоматической валидации он либо:
- Нуждается в постоянном человеке‑ревьювере
- Либо будет “галлюцинировать” успешность и ломать прод
В Replit вокруг этого построен целый цикл: генерация кода → запуск тестов → анализ фейлов → автопочинка. Без этого никакой реальной автономии нет.

2. Продвинутый контекст‑менеджмент
Агент, который делает что‑то сложнее одного файла, обязан:
- Понимать структуру репозитория и артефактов
- Удерживать состояние долгих задач (дни/недели работы над проектом)
- Помнить решения, компромиссы и ограничения (memory)
- Управлять планом: что сделано, что сломано, какие подзадачи открыты

Без хорошего управления контекстом агент либо “забывает” важные детали через N шагов, либо начинает плодить противоречия в кодовой базе.

3️⃣ После автономии — параллелизм как ключ к UX

Когда агент может действовать сам, следующая проблема — как сделать так, чтобы пользователю не приходилось ждать вечность. Michele разбирает несколько моделей параллелизации:
- Task‑level parallelism. Декомпозиция работы на независимые подзадачи: генерация фронта, бэка, конфигов, тестов и т.п. в разных “ветках” выполнения. Это снижает latency и даёт раннюю обратную связь: пользователь видит прогресс по частям, а не ждёт один гигантский ответ.
- Out‑of‑order execution. Не обязательно выполнять задачи строго в порядке плана, если есть независимые куски, которые можно тащить вперёд. Похожая идея на out‑of‑order в CPU: выигрыш по времени, но нужно аккуратно работать с зависимостями.
- Параллельная план‑декомпозиция. Не один линейный “Chain of Thought”, а дерево плана, где разные ветки могут развиваться отдельно и потом схлопываться. Это повышает устойчивость: можно откатываться не “ко всему началу”, а к узлу дерева.

Ключевая идея: последовательный агент = плохой UX. Пользователь залипает в ожидании и теряет flow. Настоящий “AI engineer experience” — это когда агент шуршит параллельно по нескольким направлениям, а человек видит понятный прогресс.

4️⃣ Баланс: latency vs ресурсы vs корректность**
Как только добавляем параллелизм и автономию, начинается классическая инженерная тройка:
- Меньше latency → больше параллельных веток → выше расход токенов/вычислений.
- Больше автономии → меньше человеческого контроля → выше риск некорректных изменений.
- Жёсткие гарантии корректности → больше проверок/ручных подтверждений → хуже UX.

Michele по сути говорит: нет “магического” решения. Нужно явно проектировать эту тройку под свой продукт:
- где мы готовы платить вычислительными ресурсами ради вау‑эффекта;
- где ради безопасности согласны пожертвовать скоростью;
- где нужна явная точка “здесь всегда спрашиваем человека”.

В продолжении будут мысли о том, а что можно извлечь инженерам при создании своих автономных агентов.

P.S.
Кстати, историю Replit хорошо рассказал Амджада Масада (CEO) в интервью Y Combinator летом (см. мой разбор)

#AI #ML #Agents #Software #Engineering #Architecture
🔥42👍1
[2/2] Autonomy Is All You Need (Рубрика #Agents)

Продолжая рассказ про доклад Michele Catasta, president & head of AI в Replit, хочется поделиться выводами о том, что может быть полезно инженерам из этого доклада

1️⃣ “Автономность” надо проектировать как фичу, а не надеяться на модель
Если вы делаете собственный агент/код‑ассистент, важно принять позицию Michele: автономия — это не свойство модели, это свойство системы.
Нужно осознанно строить:
- Слой автоматического тестирования и валидации
- Модели работы с репозиторием и долгим контекстом
- Архитектуру планирования/параллелизации
- Политику откатов и ошибок (recovery)
Иначе вы получаете “очень умный autocomplete”, а не агента.

2️⃣ Автотесты и CI/CD превращаются из “инженерной гигиены” в API для агента
Для команд разработки это переворачивает отношение к тестам и инфраструктуре:
- Хорошее покрытие тестами и быстрый CI — это не только про людей, а про то, чтобы агенты могли безопасно модифицировать систему.
- “Red → Green → Refactor” становится циклом не только для человека, но и для агента.
- Инфраструктура (test env, staging, feature flags) — это уже операционная среда для автономного агента, а не просто удобство для разработчика.

Если вы хотите в будущем доверять агенту делать миграции, фичи и рефакторинги, ему нужно:
- Где запускать код изолированно
- Как проверять, что ничего не сломано
- Куда откатываться, если сломано

3️⃣ Контекст‑менеджмент как новый слой архитектуры продукта
Архитектурно, “context management” для агента — это почти отдельный сервис:
- Индекс кода и артефактов (vector + структурные индексы);
- Долговременная память решений (design docs для агента);
- История траекторий (что агент делал, что сработало, что нет);
- Слой планирования, который может:
-- Резать задачи на подзадачи
-- Отслеживать прогресс
-- Решать, что можно делать параллельно
Это очень похоже на добавление “оркестратора” в микросервисную архитектуру, только теперь мы оркестрируем не сервисы, а действия модели.

4️⃣ Параллелизм в агентах = новые паттерны UX и DevEx
Для технических руководителей и платформенных команд:
- Нужно думать не только о том, как агент “правильно пишет код”, но и о том, как пользователь переживает его работу:
-- Показывает ли агент понятный прогресс;
-- Может ли пользователь вмешаться/скорректировать план;
-- Как отображаются параллельные ветки (логи, диаграммы, “job view”).
- План‑ориентированный UI (как в Replit Agent, LangGraph‑подобных системах) становится новым стандартом: разработчики хотят видеть траекторию агента, а не чёрный ящик.

5️⃣ Стратегический вывод: “AI‑инфраструктура” станет нормой для дев‑команд
Если принять аргументацию Michele всерьёз, ближайшие 2–3 года для инженеров и техлидов означают:
- Надо вкладываться в:
-- Тестируемость/наблюдаемость кода;
-- Явное моделирование домена (чтобы агенту было чем оперировать);
-- Инфраструктуру для экспериментов с агентами (sandbox, telemetry, safety‑rails).
- Нужно перестать мыслить агентом как “персональным Copilot’ом”;
агент — это участник команды, который:
-- Идёт по задачам бэклога,
-- Делает изменения,
-- Проходит те же quality‑гейты, что и человек (тесты, ревью, линтеры).

#AI #ML #Agents #Software #Engineering #Architecture
43🎄3