В одном из предыдущих постов мы описывали строение трех основных биополимеров. Если вы его прочли, у вас мог возникнуть вопрос: а если ДНК, РНК и белки так тесно связаны, то зачем нужны отдельные ДНК, РНК или белковые модели? Не проще ли обучать все модели на языке ДНК?
Дело в том, что для разных задач нам нужны разные данные. Чтобы предсказать структуру белка, мы могли бы использовать последовательность ДНК, но в ней находится слишком много не относящейся к данному белку информации. Выкинув всё лишнее, мы получим только кодирующую наш белок последовательность мРНК. Переведя ее на язык аминокислот, мы уменьшим размер входных данных втрое, а значит, и обучение пойдет быстрее. В этом случае работать с текстом из аминокислот кажется разумнее. Однако кое-какую информацию мы всё же потеряем.
А подробнее о том, как работают большие языковые модели с биологическими молекулами вы узнаете в статье!
#Биомолекула_биоFaq
Дело в том, что для разных задач нам нужны разные данные. Чтобы предсказать структуру белка, мы могли бы использовать последовательность ДНК, но в ней находится слишком много не относящейся к данному белку информации. Выкинув всё лишнее, мы получим только кодирующую наш белок последовательность мРНК. Переведя ее на язык аминокислот, мы уменьшим размер входных данных втрое, а значит, и обучение пойдет быстрее. В этом случае работать с текстом из аминокислот кажется разумнее. Однако кое-какую информацию мы всё же потеряем.
А подробнее о том, как работают большие языковые модели с биологическими молекулами вы узнаете в статье!
#Биомолекула_биоFaq
Рак – это настоящий вызов современности: уникальный в своем разнообразии и сложности, он продолжает оставаться одной из ведущих причин смертности. Число случаев заболевания раком растет, в том числе и из-за общего старения населения мира. С возрастом наши клетки накапливают генетические ошибки, что приводит к геномной нестабильности – прямой дороге к раку.
Но не всё так пессимистично: увеличение заболеваемости частично связано с улучшением его диагностики – мы стали чаще и точнее выявлять рак на ранних стадиях. Это открывает новые перспективы для лечения и дает надежду на победу над этим коварным недугом. Борьба продолжается, и каждое открытие ученых приближает нас к моменту, когда рак перестанет быть приговором.
О том, какие существуют методы генной и клеточной терапии рака, читайте на нашем сайте!
#Биомолекула_инфографика
Но не всё так пессимистично: увеличение заболеваемости частично связано с улучшением его диагностики – мы стали чаще и точнее выявлять рак на ранних стадиях. Это открывает новые перспективы для лечения и дает надежду на победу над этим коварным недугом. Борьба продолжается, и каждое открытие ученых приближает нас к моменту, когда рак перестанет быть приговором.
О том, какие существуют методы генной и клеточной терапии рака, читайте на нашем сайте!
#Биомолекула_инфографика
Вот уже два миллиона лет человечество идет по своему эволюционному пути, и одно из предопределяющих свершений на нем — сравнительно недавнее (всего-то десять–пятнадцать тысяч лет назад) одомашнивание первых животных. Чем отличается одомашнивание от приручения и животноводства, какое животное считается первым одомашненным и об истории ранней доместикации рассказываем в инстанте!
#Биомолекула_инстант
#Биомолекула_инстант
Telegraph
От охотника и живодера до ветеринара
В древности люди еще не умели выращивать урожаи и разводить скот, но уже занимались охотой, рыболовством и собирательством. Охотники как главные добытчики белковой пищи со временем приобретали ценный опыт и подмечали повадки своих жертв, особенности их образа…
Три века тому назад рост численности городского населения существенно изменил требования к сельскому хозяйству. Животноводство в этот период становится объектом научных исследований, цель которых — повышение скороспелости и продуктивности животных за счет выбора породы, улучшения кормления, содержания. Так появился инбридинг, о возникновении которого читайте в инстанте.
#Биомолекула_инстант
#Биомолекула_инстант
Telegraph
Как возник инбридинг
Основоположник племенного животноводства — Роберт Бейкуэлл (1725–1795): разработчик метода чистого разведения и метода родственного скрещивания (инбридинга). Инбридинг не был его единственным достижением. Бейкуэлл вывел несколько новых пород копытных (лестерских…
В одном из предыдущих постов мы уже рассказывали о том, как скормить языковым моделям большие молекулы — ДНК, РНК и белки. Малые молекулы несколько отличаются от биополимеров, но и с ними машины могут работать. Надо только правильно эти молекулы закодировать.
#Биомолекула_инстант
#Биомолекула_инстант
Telegraph
А как кодировать малые молекулы?
Главное отличие малых молекул от белков, РНК и ДНК — отсутствие регулярной структуры (ибо это, в отличие от упомянутой троицы, не биополимеры). Они не состоят из повторяющихся блоков, соединенных в длинную последовательность: структура малых молекул более…
Вначале было слово.
Потом лучевая и химиотерапия. И хирургическое удаление опухолей, конечно.
Потом таргетные лекарства.
И звезды нынешней эпохи – генные и клеточные технологии.
Почему мы не остановились на таргентных препаратах, прицельно воздействующих на звенья молекулярного онкогенеза? Потому что не такие они и таргетные, как оказалось. Больше ни слова не скажем, подробности ищите в нашей статье!
А пока вы можете посмотреть на признаки раковых клеток (необходимые для их роста и развития) и таргетные лекарства, противодействующие каждому из них. И представить (и ужаснуться) сколько работы потребовалось, чтобы все это узнать!Узнать, что общее есть у биологов и маркетологов :)
#Биомолекула_инфографика
Потом лучевая и химиотерапия. И хирургическое удаление опухолей, конечно.
Потом таргетные лекарства.
И звезды нынешней эпохи – генные и клеточные технологии.
Почему мы не остановились на таргентных препаратах, прицельно воздействующих на звенья молекулярного онкогенеза? Потому что не такие они и таргетные, как оказалось. Больше ни слова не скажем, подробности ищите в нашей статье!
А пока вы можете посмотреть на признаки раковых клеток (необходимые для их роста и развития) и таргетные лекарства, противодействующие каждому из них. И представить (и ужаснуться) сколько работы потребовалось, чтобы все это узнать!
#Биомолекула_инфографика
Если вам при упоминании царства растений приходит на ум фотосинтез, неподвижность, постоянный рост и т.д. — заинтересовать школьника вам вряд ли удастся. Поэтому вы просто обязаны прочитать эту книгу-комикс. Ведь растения чрезвычайно многообразны и необычны: некоторые из них передвигаются, питаются, вступают в отношения, оставляют свой след в истории и еще много чего интересного...
Оценка «Биомолекулы»: 8,7/10
Кому подойдет: любителям комиксов и растений всех возрастов.
Читайте на сайте.
Автор: Мария Лойко
#Биомолекула_рецензия
Оценка «Биомолекулы»: 8,7/10
Кому подойдет: любителям комиксов и растений всех возрастов.
Читайте на сайте.
Автор: Мария Лойко
#Биомолекула_рецензия
Из нового дайджеста вы узнаете о том, для чего нужны мини-органы человека, как клетки глии помогают восстанавливать функции мозга во сне, о новых оптогенетических способах контроля воспалительных процессов и о многом другом.
Читайте на нашем сайте.
Автор: Елизавета Минина
#Биомолекула_дайджест
Читайте на нашем сайте.
Автор: Елизавета Минина
#Биомолекула_дайджест
Исследование мультиомиксных данных открывает удивительные перспективы в понимании клинических фенотипов и причин прогрессирования заболеваний головного мозга. Сфера науки обращает свое внимание на ключевые патологии, такие как болезни Альцгеймера, Паркинсона, рассеянный склероз, расстройства аутистического спектра и шизофрения. Особое значение придается изучению процессов нейровоспаления, нейродегенерации и нейроиммунной дисрегуляции.
На картинке можно увидеть, как интеграция омиксных данных с клиническими характеристиками позволяет получить уникальный патологический профиль заболевания и выявить различия в состоянии головного мозга при различных комбинациях мультиомиксных слоев. Подробнее в статье.
#Биомолекула_инфографика
На картинке можно увидеть, как интеграция омиксных данных с клиническими характеристиками позволяет получить уникальный патологический профиль заболевания и выявить различия в состоянии головного мозга при различных комбинациях мультиомиксных слоев. Подробнее в статье.
#Биомолекула_инфографика
Обсуждая передовые методы борьбы с раковыми опухолями следует, конечно, узнать подробнее этапы опухолевого перерождения. И тут мы обращаем внимание на довольно очевидную вещь ─ чем больше мутаций, тем выше его риск.
Эти мутации могут наследоваться или приобретаться вследствие ошибок копирования ДНК или под действием мутагенов. Возрастающая нестабильность генома в какой-то момент просто обрушивает защитные системы клетки.
Мутации в некоторых генах — протоонкогенах — запускают канцерогенез напрямую, инициируя неконтролируемое деление; практически тот же эффект могут дать мутации в генах — супрессорах опухолей (в норме подавляющих чрезмерный рост клеток).
В итоге в клетках появляются мутантные белки, запускающие аномально активированные молекулярные каскады, которые дают старт взрывному росту клеток. Если совсем просто — клетки «теряют тормоза»: делятся бесконтрольно, продолжая злокачественно перерождаться и образуя тем самым опухоль.
О том, какие существуют методы генной и клеточной терапии рака, читайте на нашем сайте!
#Биомолекула_инфографика
Эти мутации могут наследоваться или приобретаться вследствие ошибок копирования ДНК или под действием мутагенов. Возрастающая нестабильность генома в какой-то момент просто обрушивает защитные системы клетки.
Мутации в некоторых генах — протоонкогенах — запускают канцерогенез напрямую, инициируя неконтролируемое деление; практически тот же эффект могут дать мутации в генах — супрессорах опухолей (в норме подавляющих чрезмерный рост клеток).
В итоге в клетках появляются мутантные белки, запускающие аномально активированные молекулярные каскады, которые дают старт взрывному росту клеток. Если совсем просто — клетки «теряют тормоза»: делятся бесконтрольно, продолжая злокачественно перерождаться и образуя тем самым опухоль.
О том, какие существуют методы генной и клеточной терапии рака, читайте на нашем сайте!
#Биомолекула_инфографика
Разнообразие исследований в онкологии отражает многоликость этой группы заболеваний — ежемесячно выходят десятки работ, в которых злокачественные опухоли исследуются на всех уровнях, от молекулярного до популяционного. Мы предлагаем вашему вниманию дайджест наиболее интересных исследований из самых уважаемых научных журналов мира, чтобы ориентироваться в море новой информации.
Читайте на нашем сайте.
Автор: Камиль Айсин
#Биомолекула_новость
Читайте на нашем сайте.
Автор: Камиль Айсин
#Биомолекула_новость
Сельское хозяйство играет важную роль для человечества, при этом около 40% мирового валового внутреннего продукта (ВВП) этого сектора обеспечивает именно животноводство.
Под влиянием роста численности населения, доходов и урбанизации спрос на продукцию животноводства постоянно растет. Больше фактов о животноводстве вы найдете на карточке, а узнать подробнее про состояние отрасли животноводства и ветеринарии в наше время можно в новой статье.
#Биомолекула_биоFaq
Под влиянием роста численности населения, доходов и урбанизации спрос на продукцию животноводства постоянно растет. Больше фактов о животноводстве вы найдете на карточке, а узнать подробнее про состояние отрасли животноводства и ветеринарии в наше время можно в новой статье.
#Биомолекула_биоFaq
На фото, ставшем вирусным, запечатлена Кэти Боумэн, и она в шоке. Еще бы, ведь на мониторе лэптопа ученой — первое изображение черной дыры в истории науки 🕳
👩🏻🚀 Если вы смотрели «Интерстеллар», то визуализация черной дыры там — компьютерная графика. За столетие с первых подтверждений теории относительности Эйнштейна, черную дыру — объект с огромной массой и гравитацией, искривляющий пространство-время, — никто не видел. Настоящее изображение сверхмассивной черной дыры получено консорциумом Event Horizon Telescope только в 2019 году 🔭
Галактика Mессье 87, в центре которой и располагается отснятая черная дыра, удалена от нас на 53 млн световых лет. Далековато... Чтобы качественно сфотографировать объект на таком расстоянии нужен телескоп размером с Землю! Его не соорудишь, поэтому ученые полагались на 8 телескопов, рассеянных по всей планете. Каждый из них генерировал в день терабайты информации. Фото было много, большинство из них — шум. Чтобы отфильтровать данные, найти вероятные фото и «собрать пазл», были нужны специальные алгоритмы. Их разработкой и занималась аспирант Массачусетского Технологического Института по компьютерсайнс Кэти Боумэн, которая в вузе неожиданно увлеклась астрономией и стала ее восходящей звездой ⭐️
Для обработки гигантских данных понадобилось много кода: считается, что до 900 тыс строчек! Решение было бы невозможно без удобного языка программирования Python и его библиотек: NumPy для управления массивами, SciPy для фильтрации, Matplotlib для визуализации черной дыры — именно эта картинка на мониторе у Кэти.
Да, без питона не видать нам черной дыры 😱 Любопытно, что упомянутые инструменты Python может запустить любой юзер. Главное уметь ими пользоваться ⚡️
С 1 июля друзья из Бластим проводят курс по Python. Там можно как раз с нуля освоить ключевые навыки кодинга в науке, получить представление о рабочем процессе продвинутых питонистов. Курс подойдет и новичкам, и тем, кто уже учил Python ранее, но где-то «застрял». Ссылка
Приходите учить пайтон на Бластим с промокодомBIOMOL
👩🏻🚀 Если вы смотрели «Интерстеллар», то визуализация черной дыры там — компьютерная графика. За столетие с первых подтверждений теории относительности Эйнштейна, черную дыру — объект с огромной массой и гравитацией, искривляющий пространство-время, — никто не видел. Настоящее изображение сверхмассивной черной дыры получено консорциумом Event Horizon Telescope только в 2019 году 🔭
Галактика Mессье 87, в центре которой и располагается отснятая черная дыра, удалена от нас на 53 млн световых лет. Далековато... Чтобы качественно сфотографировать объект на таком расстоянии нужен телескоп размером с Землю! Его не соорудишь, поэтому ученые полагались на 8 телескопов, рассеянных по всей планете. Каждый из них генерировал в день терабайты информации. Фото было много, большинство из них — шум. Чтобы отфильтровать данные, найти вероятные фото и «собрать пазл», были нужны специальные алгоритмы. Их разработкой и занималась аспирант Массачусетского Технологического Института по компьютерсайнс Кэти Боумэн, которая в вузе неожиданно увлеклась астрономией и стала ее восходящей звездой ⭐️
Для обработки гигантских данных понадобилось много кода: считается, что до 900 тыс строчек! Решение было бы невозможно без удобного языка программирования Python и его библиотек: NumPy для управления массивами, SciPy для фильтрации, Matplotlib для визуализации черной дыры — именно эта картинка на мониторе у Кэти.
Да, без питона не видать нам черной дыры 😱 Любопытно, что упомянутые инструменты Python может запустить любой юзер. Главное уметь ими пользоваться ⚡️
С 1 июля друзья из Бластим проводят курс по Python. Там можно как раз с нуля освоить ключевые навыки кодинга в науке, получить представление о рабочем процессе продвинутых питонистов. Курс подойдет и новичкам, и тем, кто уже учил Python ранее, но где-то «застрял». Ссылка
Приходите учить пайтон на Бластим с промокодом
Делящиеся и приобретающие самые разные мутации опухолевые клетки подвергаются давлению отбора – в результате выживают наиболее приспособленные из них.
Благодаря самой настоящей эволюции активно растущая опухоль обогащается различными клеточными субклонами, выжившими вопреки работе иммунной системы и потому научившимися обходить ее защитные механизмы. Злокачественные опухоли затем постепенно прорастают в окружающие ткани и метастазируют.
На молекулярном уровне известно более 500 генов, ассоциированных с различными формами рака. Как знание этих генов позволяет бороться с опухолями, вы узнаете в нашей статье!
#Биомолекула_биоFAQ
Благодаря самой настоящей эволюции активно растущая опухоль обогащается различными клеточными субклонами, выжившими вопреки работе иммунной системы и потому научившимися обходить ее защитные механизмы. Злокачественные опухоли затем постепенно прорастают в окружающие ткани и метастазируют.
На молекулярном уровне известно более 500 генов, ассоциированных с различными формами рака. Как знание этих генов позволяет бороться с опухолями, вы узнаете в нашей статье!
#Биомолекула_биоFAQ
💥Путь к востребованной специальности и карьерному росту, возможность зарабатывать уже во время учебы и работа над проектами мирового уровня, создание собственными руками инновационных продуктов, востребованных бизнесом и наукой все это про магистерские программы ПИШ НГУ.
Передовая инженерная школа НГУ продолжает цикл вебинаров магистерских программ. В этот раз поговорим о магистратуре «Передовые инженерные решения для биотехнологии и медицины».
📅 Дата – 16 мая
⏰ Время – 14:00 (НСК), 10:00 (МСК)
🎓 Для кого: студенты 3 – 4 курса естественно-научных направлений
На вебинаре вы также узнаете:
– Как применять подходы нелинейной инженерии и использовать биоинформатические инструменты для разработки диагностических систем.
– Как сегодня используют биоинформатику, ИИ и машинное обучение в биотехнологии и медицине
– Как наши студенты работают в R&D-подразделениях биотехнологических компаний — лидерах отрасли по созданию биоинженерных решений
– Как стажировки и работа над проектами индустриальных партнеров дают возможность зарабатывать уже во время учебы
📍Для участия необходима регистрация.
Добавляйте события в календарь, чтобы узнать обо всех преимуществах обучения в магистратуре и задать интересующие вопросы команде преподавателей!
Увидимся на вебинаре!
Erid: 2Vtzqx6JeKC
Реклама, «Новосибирский национальный исследовательский государственный университет», ИНН 5408106490
Передовая инженерная школа НГУ продолжает цикл вебинаров магистерских программ. В этот раз поговорим о магистратуре «Передовые инженерные решения для биотехнологии и медицины».
📅 Дата – 16 мая
⏰ Время – 14:00 (НСК), 10:00 (МСК)
🎓 Для кого: студенты 3 – 4 курса естественно-научных направлений
На вебинаре вы также узнаете:
– Как применять подходы нелинейной инженерии и использовать биоинформатические инструменты для разработки диагностических систем.
– Как сегодня используют биоинформатику, ИИ и машинное обучение в биотехнологии и медицине
– Как наши студенты работают в R&D-подразделениях биотехнологических компаний — лидерах отрасли по созданию биоинженерных решений
– Как стажировки и работа над проектами индустриальных партнеров дают возможность зарабатывать уже во время учебы
📍Для участия необходима регистрация.
Добавляйте события в календарь, чтобы узнать обо всех преимуществах обучения в магистратуре и задать интересующие вопросы команде преподавателей!
Увидимся на вебинаре!
Erid: 2Vtzqx6JeKC
Реклама, «Новосибирский национальный исследовательский государственный университет», ИНН 5408106490