Различия между tree-based алгоритмами машинного обучения https://www.analyticsvidhya.com/blog/2021/04/distinguish-between-tree-based-machine-learning-algorithms/
Analytics Vidhya
Distinguish Between Tree-Based Machine Learning Models
This article aims to distinguish tree-based Machine Learning algorithms (Classification and Regression Trees/CART) as per the complexity
{hagr} Linnaean Classification https://www.r-bloggers.com/2021/04/hagr-linnaean-classification/
R-bloggers
{hagr} Linnaean Classification
<div style = "width:60%; display: inline-block; float:left; "> I’ve taken another look at the {hagr} data, which I wrote about previously. This time I’m focusing on the hierarchy of creatures. Taxonomic Rank The Linnaean Taxonomy is a hierarchical classification…
Самоконтролируемая сегментация видеообъектов с помощью группировки движений.
https://clck.ru/ULvWE
https://clck.ru/ULvWE
charigyang.github.io
Self-supervised Video Object Segmentation by Motion Grouping
C. Yang, H. Lamdouar, E. Lu, A. Zisserman, W. Xie
Повышение градиента в R.
https://clck.Ru/UMdBb
https://clck.Ru/UMdBb
R-bloggers
Gradient Boosting in R
<div style = "width:60%; display: inline-block; float:left; "> Gradient Boosting in R, in this tutorial we are going to discuss extreme gradient boosting. Why is eXtreme Gradient Boosting in R? Popular in... The post Gradient Boosting in R appeared first…
Необычные возможности для искусственного интеллекта, машинного обучения и специалистов по данным https://www.datasciencecentral.com/profiles/blogs/unusual-opportunities-for-ai-machine-learning-and-data-scientists
Datasciencecentral
Unusual Opportunities for AI, Machine Learning, and Data Scientists
Here some off-the-beaten-path options to consider, when looking for a first job, a new job or extra income by leveraging your machine learning experience. Man…
Основы статистики для специалистов по данным и аналитиков данных.
https://clck.ru/UQwvh
https://clck.ru/UQwvh
Medium
Fundamentals Of Statistics For Data Scientists and Analysts
Key statistical concepts for your data science or data analytics journey
Изучение гибридных CNN-трансформаторов с помощью блочного поиска нейронной архитектуры с самоконтролем.
https://clck.ru/UTCfk
https://clck.ru/UTCfk
Python Awesome
Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search
Инструмент MLOps для развертывания проектов машинного обучения в Kubernetes.
https://clck.ru/UTCfg
https://clck.ru/UTCfg
Python Awesome
MLOps tool for deploying machine learning projects to Kubernetes
Bodywork deploys machine learning projects developed in Python
Преимущества автоматизированного тестирования и принцип его работы.
https://hackernoon.com/the-benefits-of-automation-testing-and-how-it-works-7j2434st
https://hackernoon.com/the-benefits-of-automation-testing-and-how-it-works-7j2434st
Hackernoon
The Benefits of Automation Testing and How it Works | Hacker Noon
Benefits of Automation Testing, Strategies and Best Practices. Get unique insights on how to implement automation testing fast!
Устранение возникающих угроз кибербезопасности с помощью искусственного интеллекта https://www.datasciencecentral.com/profiles/blogs/artificial-intelligence-and-cybersecurity-emerging-cyber-securi-1
Datasciencecentral
Mitigating Emerging Cyber Security Threats Using Artificial Intelligence
Last week, I taught a cybersecurity course at the University of Oxford case. I created a case study for my class based on an excellent recent paper: Deep Lea…
Анализ таймсерий в R.
https://clck.ru/UX6og
Введение в SVM (машину опорных векторов) вместе с кодом Python.
https://clck.ru/UX6oi
Машинное обучение с ML.NET - анализ настроений.
https://clck.ru/UX6ov
https://clck.ru/UX6og
Введение в SVM (машину опорных векторов) вместе с кодом Python.
https://clck.ru/UX6oi
Машинное обучение с ML.NET - анализ настроений.
https://clck.ru/UX6ov
R-bloggers
Timeseries analysis in R
<div style = "width:60%; display: inline-block; float:left; "> Timeseries analysis in R, in statistics time series, is one of the vast subjects, here we are going to analyze some basic functionalities with... The post Timeseries analysis in R appeared first…
Как спроектировать сеть с учетом масштабной эквивалентности https://towardsdatascience.com/sesn-cec766026179
Medium
Scale-Equivariant CNNs
How to design a network for scale-equivariance
Алгоритм машинного обучения помогает разгадать физику, лежащую в основе квантовых систем.
https://clck.ru/UawEw
https://clck.ru/UawEw
ScienceDaily
Machine learning algorithm helps unravel the physics underlying quantum systems
Scientists have developed an algorithm that provides valuable insights into the physics underlying quantum systems - paving the way for significant advances in quantum computation and sensing, and potentially turning a new page in scientific investigation.
Дополнительные приемы, рецепты и статистические модели машинного обучения.
https://clck.ru/UawLR Масштабирование сегодня: новому стеку исполнилось 7 лет.
https://clck.ru/UawH6
https://clck.ru/UawLR Масштабирование сегодня: новому стеку исполнилось 7 лет.
https://clck.ru/UawH6
Datasciencecentral
More Machine Learning Tricks, Recipes, and Statistical Models
Source for picture: here
The first part of this list was published here. These are articles that I wrote in the last few years. The whole series will feature…
The first part of this list was published here. These are articles that I wrote in the last few years. The whole series will feature…
Самый важный компонент в конвейере ML невидим.
https://clck.ru/UbypL
https://clck.ru/UbypL
Container Journal
The Most Crucial Component in an ML Pipeline is Invisible - Container Journal
MLMD helps us analyze all the parts of an ML pipeline and how they interconnect. Here's an example of how to use it to create ML models.
Обзор по самоконтролируемому контрастивному обучению.
https://clck.ru/UbypU
https://clck.ru/UbypU
Medium
Review on Self-Supervised Contrastive Learning
For the past few years, contrastive learning and self-supervised techniques became a hot topic in computer vision. Many researchers from different AI research labs are working on creating new…
Что я узнал за 25 лет машинного обучения https://www.datasciencecentral.com/profiles/blogs/what-i-learned-from-25-years-of-machine-learning
Datasciencecentral
What I Learned From 25 Years of Machine Learning
Source: here
Here is what I learned from practicing machine learning in business settings for over two decades, and prior to that in the academia. Back in the…
Here is what I learned from practicing machine learning in business settings for over two decades, and prior to that in the academia. Back in the…
Глубокие сверточные генеративные состязательные сети.
https://clck.ru/Uf8Wj
Что такого особенного в векторных вложениях.
https://clck.ru/Uf8XQ
https://clck.ru/Uf8Wj
Что такого особенного в векторных вложениях.
https://clck.ru/Uf8XQ
Medium
Deep Convolutional Generative Adversarial Networks
In 2014, Goodfellow et al. presented the Generative Adversarial Network (GAN) that generates images similar to the ones in the image…
Будущее автоматизации бизнес-процессов.
https://hackernoon.com/the-future-of-business-process-automation-u34o34n9
https://hackernoon.com/the-future-of-business-process-automation-u34o34n9
Механизм управления данными и безопасности в распределенной системе хранения данных https://dzone.com/articles/a-snapshot-about-data-governance-amp-security-mech
dzone.com
Snapshot: Data Governance and Security Mechanism in Distributed Data Storage System - DZone Big Data
Data governance can be defined as the consolidation of managing data access, accountability, and security. By default, HDFS does not provide any strong security