Написал в сегодняшнюю рассылку [1] про платформу Гостех, где постарался изложить свою позицию насколько можно подробно.
А тут напишу что мой прогноз в том что платформа Гостех имеет следующие сценарии развития:
- Оптимистичный (для платформы): стать востребованным продуктом, на платформу начнут переносить существующие ФГИСы, а Сбербанк/ФКУ Гостех станут естественной монополией в этой области.
- Реалистичный: платформу будут использовать для создания новых ФГИС и расширения интеграционного контура с Госуслугами и ещё рядом ФГИС под прямым контролем Минцифры и нескольких ФОИВов и иных госструктур.
- Пессимистичный: появятся систематизированные требования для гособлаков, появится 2-3 платформы близких по масштабу к текущему Гостеху, скорее всего в отраслевом разрезе. Например, единая облачная платформа ВПК или единая облачная платформа транспортной отрасли и так далее, с выстраиванием отраслевой специфики.
Всё это сценарии развития Гостеха с точки зрения его создателей, каковы сценарии его развития для пользователей и разработчиков которые будут с ним работать - я предлагаю подумать всем вместе.
Ссылки:
[1] https://begtin.substack.com/p/17-
#government #tech #technology #clouds
А тут напишу что мой прогноз в том что платформа Гостех имеет следующие сценарии развития:
- Оптимистичный (для платформы): стать востребованным продуктом, на платформу начнут переносить существующие ФГИСы, а Сбербанк/ФКУ Гостех станут естественной монополией в этой области.
- Реалистичный: платформу будут использовать для создания новых ФГИС и расширения интеграционного контура с Госуслугами и ещё рядом ФГИС под прямым контролем Минцифры и нескольких ФОИВов и иных госструктур.
- Пессимистичный: появятся систематизированные требования для гособлаков, появится 2-3 платформы близких по масштабу к текущему Гостеху, скорее всего в отраслевом разрезе. Например, единая облачная платформа ВПК или единая облачная платформа транспортной отрасли и так далее, с выстраиванием отраслевой специфики.
Всё это сценарии развития Гостеха с точки зрения его создателей, каковы сценарии его развития для пользователей и разработчиков которые будут с ним работать - я предлагаю подумать всем вместе.
Ссылки:
[1] https://begtin.substack.com/p/17-
#government #tech #technology #clouds
Substack
#17. Гостех: оптимистичный, реалистичный и пессимистичный сценарии
План, что и говорить, был превосходный: простой и ясный, лучше не придумать. Недостаток у него был только один: было совершенно неизвестно, как привести его в исполнение (c) Льюис Кэролл
В рубрике полезные инструменты для работы с данными:
- OpenRefine версии 3.5.0 вышел совсем недавно, один из лучших инструментов для data wrangling, точно лучший из бесплатных. Много разных улучшений, для поддержки Wikibase/Wikidata, для работы в UI и ещё многое другое.
- Autoscraper не совсем обычный инструмент автоматического скрейпинга данных на основе примеров. Вместо сложных конструкций по парсингу HTML скрейперу передаётся пример данных, а дальше он сам додумывается. Хорошая штука, я когда-то думал в этом же направлении, но шёл от понимания структуры данных, а тут от содержания.
- Developing AI-Based Solution for Web Scraping: Lessons Learned - полезная статья на ту же тему автоматизации скрейпинга данных. То что авторы используют термин AI - это, конечно, совсем неправда. Просто адаптивные алгоритмы, но и они это уже хороший прогресс.
- QuestDb - открытая СУБД с обещаниями очень хорошей скорости для хранения и обработки временных рядов. По их собственным бенчмаркам обгоняет ClickHouse
- NADA (National Data Archive) - проект Мирового Банка по публикации микроданных опросов, переписей и так далее. С открытым кодом и с поддержкой стандарта раскрытия данных DDI (Data Documentation Initiative). Используется самим Мировым банком в их базе микроданных и ещё в нескольких странах национальными службами статистики.
А также не совсем про данные:
- PubPub для тех кто интересуется новыми моделями публикации научных текстов, у проекта PubPub.org есть открытый код которым можно воспользоваться. Это не совсем про данные, но близко к открытости науки и открытости знания.
#data #tools #tech
- OpenRefine версии 3.5.0 вышел совсем недавно, один из лучших инструментов для data wrangling, точно лучший из бесплатных. Много разных улучшений, для поддержки Wikibase/Wikidata, для работы в UI и ещё многое другое.
- Autoscraper не совсем обычный инструмент автоматического скрейпинга данных на основе примеров. Вместо сложных конструкций по парсингу HTML скрейперу передаётся пример данных, а дальше он сам додумывается. Хорошая штука, я когда-то думал в этом же направлении, но шёл от понимания структуры данных, а тут от содержания.
- Developing AI-Based Solution for Web Scraping: Lessons Learned - полезная статья на ту же тему автоматизации скрейпинга данных. То что авторы используют термин AI - это, конечно, совсем неправда. Просто адаптивные алгоритмы, но и они это уже хороший прогресс.
- QuestDb - открытая СУБД с обещаниями очень хорошей скорости для хранения и обработки временных рядов. По их собственным бенчмаркам обгоняет ClickHouse
- NADA (National Data Archive) - проект Мирового Банка по публикации микроданных опросов, переписей и так далее. С открытым кодом и с поддержкой стандарта раскрытия данных DDI (Data Documentation Initiative). Используется самим Мировым банком в их базе микроданных и ещё в нескольких странах национальными службами статистики.
А также не совсем про данные:
- PubPub для тех кто интересуется новыми моделями публикации научных текстов, у проекта PubPub.org есть открытый код которым можно воспользоваться. Это не совсем про данные, но близко к открытости науки и открытости знания.
#data #tools #tech
GitHub
Release OpenRefine v3.5.0 · OpenRefine/OpenRefine
This is the first stable release of the 3.5 series. Please backup your workspace directory before installing and report any problems that you encounter.
New features
Wikidata support has been gene...
New features
Wikidata support has been gene...
Я бы сказал что у меня скепсиса прибавилось, но посмотрим. По прежнему считаю что концепция здравая, а реализацию ещё не поздно корректировать.
Ссылки:
[1] https://www.youtube.com/watch?v=NddaKbSqa94
[2] https://www.developer.tech.gov.sg/
#govtech #government #tech
Ссылки:
[1] https://www.youtube.com/watch?v=NddaKbSqa94
[2] https://www.developer.tech.gov.sg/
#govtech #government #tech
YouTube
"ГосТех" Проектируем будущее вместе
Конференция на площадке РАНХиГС на тему: «ГосТех». Проектируем будущее вместе»
В рубрике много интересного чтения о данных. Практически все по практике работы с данными и технологических стартапах:
- 30 startups that show how open source ate the world in 2021 [1] обзор 30 стартапов продуктов с открытым кодом привлекших значительное финансирование. Многие стартапы исключительно про работу с данными и про инфраструктурные аспекты работы с данными, например, MindsDB [2] про машинное обучение внутри СУБД или Airbyte [3] про преобразование и интеграцию данных. Там же упоминается весьма интересный проект Hoppscotch [4] про проектирование API с открытым кодом, фактически открытый аналог Postman. А модель многих open source продуктов часто похожа на "давайте посмотрим на лучший продукт на рынке и сделаем такой-же только с открытым кодом. А зарабатывать будем на облачной версии", иногда это работает;)
- One Year of dbt [5] статья автора о более чем годе практике использования Dbt (data build tool) [6], теперь уже популярном инструменте преобразования данных, с открытым кодом и интеграцией практически со всеми современными корпоративными инструментами и современным стеком данных.
- Announcing preview of BigQuery’s native support for semi-structured data [7] в Google BigQuery анонсируют поддержку полу-структурированных данных, с обращением к JSON данным внутри запросов. Много времени прошло с тех пор как она ожидалась и вот появилась.
Ссылки:
[1] https://venturebeat.com/2022/01/03/30-startups-that-show-how-open-source-ate-the-world-in-2021/
[2] https://mindsdb.com/
[3] https://airbyte.com/
[4] https://hoppscotch.io
[5] https://tech.devoted.com/one-year-of-dbt-b2e8474841ca
[6] https://www.getdbt.com/
[7] https://cloud.google.com/blog/products/data-analytics/bigquery-now-natively-supports-semi-structured-data
#reading #data #tech
- 30 startups that show how open source ate the world in 2021 [1] обзор 30 стартапов продуктов с открытым кодом привлекших значительное финансирование. Многие стартапы исключительно про работу с данными и про инфраструктурные аспекты работы с данными, например, MindsDB [2] про машинное обучение внутри СУБД или Airbyte [3] про преобразование и интеграцию данных. Там же упоминается весьма интересный проект Hoppscotch [4] про проектирование API с открытым кодом, фактически открытый аналог Postman. А модель многих open source продуктов часто похожа на "давайте посмотрим на лучший продукт на рынке и сделаем такой-же только с открытым кодом. А зарабатывать будем на облачной версии", иногда это работает;)
- One Year of dbt [5] статья автора о более чем годе практике использования Dbt (data build tool) [6], теперь уже популярном инструменте преобразования данных, с открытым кодом и интеграцией практически со всеми современными корпоративными инструментами и современным стеком данных.
- Announcing preview of BigQuery’s native support for semi-structured data [7] в Google BigQuery анонсируют поддержку полу-структурированных данных, с обращением к JSON данным внутри запросов. Много времени прошло с тех пор как она ожидалась и вот появилась.
Ссылки:
[1] https://venturebeat.com/2022/01/03/30-startups-that-show-how-open-source-ate-the-world-in-2021/
[2] https://mindsdb.com/
[3] https://airbyte.com/
[4] https://hoppscotch.io
[5] https://tech.devoted.com/one-year-of-dbt-b2e8474841ca
[6] https://www.getdbt.com/
[7] https://cloud.google.com/blog/products/data-analytics/bigquery-now-natively-supports-semi-structured-data
#reading #data #tech
VentureBeat
30 startups that show how open source ate the world in 2021
A look at some of the open source startups that gained traction in 2021, revealing where the world is looking to leverage the power of OSS.
О данных, веб-сайтах и том как с ними работают. Я рассказывал что веду архивацию госсайтов, в том числе самописными инструментами, которые архивируют данные из открытых API которые веб-краулеры не поддерживают. Такая утилита есть APIBackuper для сфокусированной архивации и ещё для 5 популярных CMS у которых такое общедоступное API есть по умолчанию. Некоторые владельцы сайтов это API по умолчанию сразу отключают, но у большинства оно доступно и через него можно скачивать весь тот же контент что есть на сайте, только быстрее, удобнее и автоматически.
Но бывают и вопиющие случаи. Не буду называть конкретный орган власти/госорганизацию, но у них на веб-сайт предусмотрена подписка на рассылки СМИ. Подписка реализована встроенными средствами CMS и, барабанная дробь, открытые интерфейсы этой CMS отдают данные о всех подписчиках. К счастью, их там не так много, чуть более 200 человек и данные там хоть и персональные, но не самые чувствительные, только email+ФИО+факт подписки, но картина показательная о том как организована работа с данными в госорганах.
В данном случае даже не знаю что лучше, написать им чтобы исправили, или забить на них и пусть сами разбираются с последствиями (там правда, ничего серьёзного нет, обычный контентный сайт).
Таких случаев много, много случаев публикации чувствительных данных, просто доступа к данным и тд. Госзаказчики чаще всего просто не знают на каких инструментах создана их инфраструктура и поэтому так много недокументированных API у госсайтов и государственных информационных систем. Это вопрос не только культуры работы с данными, но и обычной технологической культуры и полнейшее отсутствие централизованного аудита и мониторинга государственного технологического сектора.
#tech #government #governmentit #privacy #leaks
Но бывают и вопиющие случаи. Не буду называть конкретный орган власти/госорганизацию, но у них на веб-сайт предусмотрена подписка на рассылки СМИ. Подписка реализована встроенными средствами CMS и, барабанная дробь, открытые интерфейсы этой CMS отдают данные о всех подписчиках. К счастью, их там не так много, чуть более 200 человек и данные там хоть и персональные, но не самые чувствительные, только email+ФИО+факт подписки, но картина показательная о том как организована работа с данными в госорганах.
В данном случае даже не знаю что лучше, написать им чтобы исправили, или забить на них и пусть сами разбираются с последствиями (там правда, ничего серьёзного нет, обычный контентный сайт).
Таких случаев много, много случаев публикации чувствительных данных, просто доступа к данным и тд. Госзаказчики чаще всего просто не знают на каких инструментах создана их инфраструктура и поэтому так много недокументированных API у госсайтов и государственных информационных систем. Это вопрос не только культуры работы с данными, но и обычной технологической культуры и полнейшее отсутствие централизованного аудита и мониторинга государственного технологического сектора.
#tech #government #governmentit #privacy #leaks
Полезное чтение про разное
- How often do people actually copy and paste from Stack Overflow? Now we know. [1] о том как часто программисты копируют тексты со Stack Overflow. Мини-исследование от команды проекта собиравших данные о копировании с помощью отслеживания фактов копирования в JavaScript коде. Если кратко - копируют много и посты/ответы с хорошей репутацией.
- The next billion programmers [2] рассуждения всё того же Benn Stancil из стартапа Mode о том что самый главный продукт для переделки или пересоздания - это Excel. У Бена хорошие рассуждения практически во всех его текстах, он уходит куда дальше чем просто продвижение Mode и дискуссий вокруг хайпов вокруг данных, а рассуждает по общеотраслевые проблемы. Excel - это, действительно, с одной стороны гениальное, а с другой тяжкое наследие.
- Six Reasons Why the Wolfram Language Is (Like) Open Source [3] ноябрьский текст от Jon McLoone, директора по коммуникациям и стратегии в Wolfram, о том почему модель открытого кода не подходит для ключевых технологий Wolfram. Для тех кто не знает, Wolfram Mathematica один из лучших продуктов для технических вычислений, а Wolfram Alpha один из лучших продуктов поиска ответов на вопросы со способностью давать ответы в технических дисциплинах. Но все эти продукты с закрытым кодом, включая их Wolfram Language и многие не используют именно из-за закрытости и замкнутости экосистемы Wolfram. Стоит почитать чтобы понимать позицию тех кто делает хорошие продукты и не может поменять бизнес модель в сторону открытости и поговорить о том к чему это приведет.
- Tableau Data Catalog: Let’s do the jigsaw puzzle! [4] команда разработчиков пытаются построить каталог данных на базе Tableau. На мой взгляд это не самый правильный путь, но активным пользователям Tableau может оказаться полезным.
- Understanding of metrics store [5] полезный обзорный текст про хранилища метрик, как лучше их организовать, зачем и кому они нужны. Лично у меня metrics store четко ассоциируется с Headless BI, и разделением аналитических показателей на подсчет, хранение и интерфейс.
- Snowflake Data Classification Now Available in Public Preview [6] в Snowflake анонсировали технологии классификации данных для данных загружаемых пользователями, но потом почему-то статью убрали и осталась она только в гугл кеше. Технология практически та же что у нас в DataCrafter'е [7] и то что я недавно анонсировал в виде утилиты metacrafter [8] с открытым кодом. Разница в том что у Snowflake это встроено в систему SQL запросов и находится прямо внутри их движка.
Ссылки:
[1] https://stackoverflow.blog/2021/12/30/how-often-do-people-actually-copy-and-paste-from-stack-overflow-now-we-know/
[2] https://benn.substack.com/p/the-next-billion-programmers
[3] https://blog.wolfram.com/2021/11/30/six-reasons-why-the-wolfram-language-is-like-open-source/
[4] https://medium.com/iadvize-engineering/tableau-data-catalog-lets-do-the-jigsaw-puzzle-cef93e674622
[5] https://medium.com/kyligence/understanding-the-metrics-store-c213341e4c25
[6] https://webcache.googleusercontent.com/search?q=cache:61aCFi3onBwJ:https://www.snowflake.com/blog/data-classification-now-available-in-public-preview/+&cd=1&hl=fr&ct=clnk&gl=de&client=firefox-b-d
[7] https://data.apicrafter.ru/class
[8] https://github.com/apicrafter/metacrafter/
#reading #data #tech
- How often do people actually copy and paste from Stack Overflow? Now we know. [1] о том как часто программисты копируют тексты со Stack Overflow. Мини-исследование от команды проекта собиравших данные о копировании с помощью отслеживания фактов копирования в JavaScript коде. Если кратко - копируют много и посты/ответы с хорошей репутацией.
- The next billion programmers [2] рассуждения всё того же Benn Stancil из стартапа Mode о том что самый главный продукт для переделки или пересоздания - это Excel. У Бена хорошие рассуждения практически во всех его текстах, он уходит куда дальше чем просто продвижение Mode и дискуссий вокруг хайпов вокруг данных, а рассуждает по общеотраслевые проблемы. Excel - это, действительно, с одной стороны гениальное, а с другой тяжкое наследие.
- Six Reasons Why the Wolfram Language Is (Like) Open Source [3] ноябрьский текст от Jon McLoone, директора по коммуникациям и стратегии в Wolfram, о том почему модель открытого кода не подходит для ключевых технологий Wolfram. Для тех кто не знает, Wolfram Mathematica один из лучших продуктов для технических вычислений, а Wolfram Alpha один из лучших продуктов поиска ответов на вопросы со способностью давать ответы в технических дисциплинах. Но все эти продукты с закрытым кодом, включая их Wolfram Language и многие не используют именно из-за закрытости и замкнутости экосистемы Wolfram. Стоит почитать чтобы понимать позицию тех кто делает хорошие продукты и не может поменять бизнес модель в сторону открытости и поговорить о том к чему это приведет.
- Tableau Data Catalog: Let’s do the jigsaw puzzle! [4] команда разработчиков пытаются построить каталог данных на базе Tableau. На мой взгляд это не самый правильный путь, но активным пользователям Tableau может оказаться полезным.
- Understanding of metrics store [5] полезный обзорный текст про хранилища метрик, как лучше их организовать, зачем и кому они нужны. Лично у меня metrics store четко ассоциируется с Headless BI, и разделением аналитических показателей на подсчет, хранение и интерфейс.
- Snowflake Data Classification Now Available in Public Preview [6] в Snowflake анонсировали технологии классификации данных для данных загружаемых пользователями, но потом почему-то статью убрали и осталась она только в гугл кеше. Технология практически та же что у нас в DataCrafter'е [7] и то что я недавно анонсировал в виде утилиты metacrafter [8] с открытым кодом. Разница в том что у Snowflake это встроено в систему SQL запросов и находится прямо внутри их движка.
Ссылки:
[1] https://stackoverflow.blog/2021/12/30/how-often-do-people-actually-copy-and-paste-from-stack-overflow-now-we-know/
[2] https://benn.substack.com/p/the-next-billion-programmers
[3] https://blog.wolfram.com/2021/11/30/six-reasons-why-the-wolfram-language-is-like-open-source/
[4] https://medium.com/iadvize-engineering/tableau-data-catalog-lets-do-the-jigsaw-puzzle-cef93e674622
[5] https://medium.com/kyligence/understanding-the-metrics-store-c213341e4c25
[6] https://webcache.googleusercontent.com/search?q=cache:61aCFi3onBwJ:https://www.snowflake.com/blog/data-classification-now-available-in-public-preview/+&cd=1&hl=fr&ct=clnk&gl=de&client=firefox-b-d
[7] https://data.apicrafter.ru/class
[8] https://github.com/apicrafter/metacrafter/
#reading #data #tech
stackoverflow.blog
How often do people actually copy and paste from Stack Overflow? Now we know. - Stack Overflow
Для тех кто пользуется телеграмом регулярно, поделюсь несколькими идеями продуктов которыми мне самому заняться всегда не хватало времени/мотивации/занятости. Да и специализация моя data engineering, что немного в другой области.
Первая идея весьма очевидная.
Аналог Slack/Element на базе Telegram
У телеграм'а есть сильное ограничение в числе каналов и чатов которые возможно поддерживать в одиночку. Больше чем на 20 каналов подписываться самоубийственное занятие, а чаты идут вперемешку рабочие и нерабочие и всякие. В этом смысле Slack или Element (Matrix) организованные по комнатам и сгруппированные по компаниям удобнее для корпоративного использования. В десктопном телеграме есть возможность группировать каналы и чаты, но, скажем так, довольно ограниченная.
Так вот востребованная штука - это сделать аналог Slack'а поверх телеграма. Почему так? Аналог Slack - это:
1. Способ организации рабочего пространства. В нем должны быть собраны все чаты команд, каналы команды и тд.
2. Автоматизированная архивация всей корпоративной переписки в чатах.
3. Корпоративный поиск по чатам (нужен поиск только по чатам в рамках определенной группы).
4. Иные возможности как у Slack'а
Почему Телеграм? Потому что он повсеместен. Сотрудники могут пользоваться корпоративным мессенжером или любым имеющимся, не так важно. Телеграм создает готовую инфраструктуру поверх которой может быть построено полноценное рабочее пространство.
—
Конечно, идеально было бы если бы в самом телеграм'е эти опции были бы вшиты, у корпоративной версии было бы платящих немало клиентов. Тех кто для коммуникаций команды сейчас выбирает между Mattermost и Element.
#ideas #tech #telegram
Первая идея весьма очевидная.
Аналог Slack/Element на базе Telegram
У телеграм'а есть сильное ограничение в числе каналов и чатов которые возможно поддерживать в одиночку. Больше чем на 20 каналов подписываться самоубийственное занятие, а чаты идут вперемешку рабочие и нерабочие и всякие. В этом смысле Slack или Element (Matrix) организованные по комнатам и сгруппированные по компаниям удобнее для корпоративного использования. В десктопном телеграме есть возможность группировать каналы и чаты, но, скажем так, довольно ограниченная.
Так вот востребованная штука - это сделать аналог Slack'а поверх телеграма. Почему так? Аналог Slack - это:
1. Способ организации рабочего пространства. В нем должны быть собраны все чаты команд, каналы команды и тд.
2. Автоматизированная архивация всей корпоративной переписки в чатах.
3. Корпоративный поиск по чатам (нужен поиск только по чатам в рамках определенной группы).
4. Иные возможности как у Slack'а
Почему Телеграм? Потому что он повсеместен. Сотрудники могут пользоваться корпоративным мессенжером или любым имеющимся, не так важно. Телеграм создает готовую инфраструктуру поверх которой может быть построено полноценное рабочее пространство.
—
Конечно, идеально было бы если бы в самом телеграм'е эти опции были бы вшиты, у корпоративной версии было бы платящих немало клиентов. Тех кто для коммуникаций команды сейчас выбирает между Mattermost и Element.
#ideas #tech #telegram
Тем временем в Японии специалисты NICT разработали и создали технологию передачи данных со скоростью в 1.02 Петабита в секунду [1] по кабелю длиной 51.7 километра.
Авторы исследования и ранее немало добились в экспериментах по передаче данных, даже интересно когда такие скорости доберутся до потребителей.
Ссылки:
[1] https://www.sciencealert.com/researchers-just-set-a-new-record-for-data-transmission-speed
#tech
Авторы исследования и ранее немало добились в экспериментах по передаче данных, даже интересно когда такие скорости доберутся до потребителей.
Ссылки:
[1] https://www.sciencealert.com/researchers-just-set-a-new-record-for-data-transmission-speed
#tech
ScienceAlert
Researchers Just Set a New Record For Data Transmission Speed
Even if you're enjoying gloriously fast broadband at home wherever you live in the world, you're still going to be a long, long way behind the new record for data transmission: an incredible 1.02 petabits per second.