Тем временем не я один поднимаю вопрос об алгоритмической манипуляции потребителями. В Нью Йорке власти города рассматривают законопроект об обязательной публичности и обследовании всех алгоритмов используемых городскими службами.
Arstechnica пишет [1] что уже публикуют даже алгоритмы анализа ДНК и изучают способы описания работы алгоритмов понятным людям языком. Что особенно важно для безальтернативных алгоритмов используемых госорганами.
Это важная история именно в контексте цифровой экономики и не надо думать что Россию она не затронет.
Однако будем надеяться что наши депутаты еще не скоро до этого догадаются, потому что начнут они регулировать не государство, а коммерческие компании.
Не присылайте им ссылки на этот текст. Не надо.
Ссылки:
[1] https://arstechnica.com/tech-policy/2017/12/new-york-city-moves-to-create-accountability-for-algorithms/
#opendata #opensource #algorithms
Arstechnica пишет [1] что уже публикуют даже алгоритмы анализа ДНК и изучают способы описания работы алгоритмов понятным людям языком. Что особенно важно для безальтернативных алгоритмов используемых госорганами.
Это важная история именно в контексте цифровой экономики и не надо думать что Россию она не затронет.
Однако будем надеяться что наши депутаты еще не скоро до этого догадаются, потому что начнут они регулировать не государство, а коммерческие компании.
Не присылайте им ссылки на этот текст. Не надо.
Ссылки:
[1] https://arstechnica.com/tech-policy/2017/12/new-york-city-moves-to-create-accountability-for-algorithms/
#opendata #opensource #algorithms
Ars Technica
New York City moves to create accountability for algorithms
City Council passes bill addressing algorithmic discrimination in city government.
Правительство Великобритании использует алгоритмы для выбора приоритета проверки школ [1]. Так в Великобритании тоже идут изменения в надзоре и контроле государства, хотя это и не называется реформой. Разработкой алгоритмов занимается команда Behavioural Insights Team [2] применяющая алгоритмы прогнозирования не только к инспекциям, но и к другой деятельности государства.
Чему уже сопротивляется союз учителей, призывающей к прозрачности работы алгоритмов и наличию четких критериев для проверяемых в том какая именно школа выбрана для проверки.
Не стоит рассчитывать что эта тенденция обойдет Россию стороной. Все что нужно для внедрения алгоритмического планирования проверок или прогнозирования - это смена поколений руководителей.
Ссылки:
[1] http://www.bbc.com/news/technology-42425959
[2] http://www.behaviouralinsights.co.uk/publications/using-data-science-in-policy/
#opendata #algorithms #bigdata
Чему уже сопротивляется союз учителей, призывающей к прозрачности работы алгоритмов и наличию четких критериев для проверяемых в том какая именно школа выбрана для проверки.
Не стоит рассчитывать что эта тенденция обойдет Россию стороной. Все что нужно для внедрения алгоритмического планирования проверок или прогнозирования - это смена поколений руководителей.
Ссылки:
[1] http://www.bbc.com/news/technology-42425959
[2] http://www.behaviouralinsights.co.uk/publications/using-data-science-in-policy/
#opendata #algorithms #bigdata
BBC News
Artificial intelligence school inspections face resistance
The National Association of Head Teachers criticises plans to use algorithms to help rate schools.
Можно ли предсказать голосование по фотографии? А если это панорамная фотография?
Исследователи из Стенфордского университета проанализировали 50 миллионов фотографий из Google Street View [1]
и научились определять типы автомобилей и, соответственно, предсказывать голосования в местах где они сделаны.
Всего система умеет предсказывать с высокой точностью уровень доходов, расовые признаки, образование и привычки в голосовании с детальностью до почтового индекса (ZIP кода).
Все это социологам и в России на заметку, кроме Google Street View в России ещё есть Яндекс Панорамы и алгоритмы позволили бы провести реальные исследования устройства российского общества.
Подробнее об исследовании [2]
Ссылки:
[1] https://www.nytimes.com/2017/12/31/technology/google-images-voters.html
[2] http://www.pnas.org/content/114/50/13108.full.pdf
#opendata #data #algorithms
Исследователи из Стенфордского университета проанализировали 50 миллионов фотографий из Google Street View [1]
и научились определять типы автомобилей и, соответственно, предсказывать голосования в местах где они сделаны.
Всего система умеет предсказывать с высокой точностью уровень доходов, расовые признаки, образование и привычки в голосовании с детальностью до почтового индекса (ZIP кода).
Все это социологам и в России на заметку, кроме Google Street View в России ещё есть Яндекс Панорамы и алгоритмы позволили бы провести реальные исследования устройства российского общества.
Подробнее об исследовании [2]
Ссылки:
[1] https://www.nytimes.com/2017/12/31/technology/google-images-voters.html
[2] http://www.pnas.org/content/114/50/13108.full.pdf
#opendata #data #algorithms
Nytimes
How Do You Vote? 50 Million Google Images Give a Clue
Artificial intelligence is making it possible for Street Views to be mined for insights about the economy, politics and human behavior — just as text mining has done for years.
В последние месяцы у меня было много разговоров о том как государство использует или могло бы использовать данные, современные алгоритмы и, в будущем, искусственный интеллект.
Более всего, разумеется, упоминаются самые благие начинания - от повышения эффективности бюрократического аппарата, до повышения качества работы с госфинансами.
Но самые масштабные, самые серьёзные, самые масштабные области применения, конечно же совершенно в другом. Они в обработке бесконечного объёма данных с возможностью отслеживания любых действий каждого человека.
Правительство США в рамках программы IARPA финансирует две исследовательские программы Finder [1], Alladin Video [2] и Deep Intermodal Video Analytics (DIVA) [3].
Finder - это программа по извлечению геолокационных данных из фотографий без соответствующей информации в EXIF. Например, если пользователь запретил публиковать геоданные.
Alladin Video - это извлечение знаний/данных из видеозаписей на популярных видеохостингах. Это распознавание лиц, объектов, событий,
DIVA - это распознавание лиц и активности для потокового видео (в основном камер наблюдения) с автоматическим направлением уведомлений о событиях.
Отличие США от других стран лишь в лучшей организации научной составляющей этой работы, в остальном же важный интерес всех более менее крупных (богатых) государств не в оптимизации системы управления, а в тотальной слежке.
Ссылки:
[1] https://www.iarpa.gov/index.php/research-programs/finder
[2] https://www.iarpa.gov/index.php/research-programs/aladdin-video
[3] https://www.iarpa.gov/index.php/research-programs/diva
#data #algorithms
Более всего, разумеется, упоминаются самые благие начинания - от повышения эффективности бюрократического аппарата, до повышения качества работы с госфинансами.
Но самые масштабные, самые серьёзные, самые масштабные области применения, конечно же совершенно в другом. Они в обработке бесконечного объёма данных с возможностью отслеживания любых действий каждого человека.
Правительство США в рамках программы IARPA финансирует две исследовательские программы Finder [1], Alladin Video [2] и Deep Intermodal Video Analytics (DIVA) [3].
Finder - это программа по извлечению геолокационных данных из фотографий без соответствующей информации в EXIF. Например, если пользователь запретил публиковать геоданные.
Alladin Video - это извлечение знаний/данных из видеозаписей на популярных видеохостингах. Это распознавание лиц, объектов, событий,
DIVA - это распознавание лиц и активности для потокового видео (в основном камер наблюдения) с автоматическим направлением уведомлений о событиях.
Отличие США от других стран лишь в лучшей организации научной составляющей этой работы, в остальном же важный интерес всех более менее крупных (богатых) государств не в оптимизации системы управления, а в тотальной слежке.
Ссылки:
[1] https://www.iarpa.gov/index.php/research-programs/finder
[2] https://www.iarpa.gov/index.php/research-programs/aladdin-video
[3] https://www.iarpa.gov/index.php/research-programs/diva
#data #algorithms
www.iarpa.gov
Finder
The Intelligence Advanced Research Projects Activity (IARPA) invests in high-risk/high-payoff research programs that have the potential to provide our nation with an overwhelming intelligence advantage over future adversaries.
Интересное интервью [1] с Hanna Fry [2], профессором математики в UCL и автором книги "Hello World. Being Human in the Age of Machine". В интервью она говорит о важности аудита алгоритмов и об одном из возможных путей - созданием агентства вроде FDA (Food and Drug Agency - отвечает за тестирование лекарств, его российский аналог Росздравнадзор). Это агентство проверяло бы алгоритмы до того как они использовались бы на людях, сохраняя интеллектуальную собственность создателей, но имея возможность убедиться в недискриминационности алгоритмов.
Как и сама книга "Hello World", её интервью построено не на технических аспектах работы алгоритмов, а на этических и поднимают вопросы, прежде всего, кодификации и проверки моральности алгоритмических решений и ответов на которые мы сами должны найти ответ - готовы ли мы что многие решения в отношении нашей жизни начнут принимать алгоритмы.
Дождёмся ли мы того что решения начнут принимать алгоритмы, а обращение к решению человека будет аппеляцией к решению машины?
Это не только не праздные вопросы про будущее, это ещё и вопросы про настоящее.
Например:
- Готовы ли мы что нам алгоритмы начнут ставить диагноз?
- Готовы ли мы что алгоритмы будут нас судить вместо судей?
- Готовы ли мы что алгоритмы будут принимать решение чью жизнь спасать, пешехода или водителя?
Появление аналога FDA для алгоритмов может оказаться неподъёмной задачей для многих государств, не имея возможности платить экспертам анализирующим алгоритмы зарплаты сравнимые с зарплатами разработчиков алгоритмов можно будет столкнуться с большими сложностями в качестве их оценки. С другой стороны внимание и страхи граждан и регуляторов к тому как алгоритмы оказывают влияние на общество неизбежно приведет к тому что их разработка так или иначе будет подвержена этическим требованиям и их проверке.
Вопрос лишь в том как это будет устроено в итоге.
Ссылки:
[1] http://nautil.us/issue/66/clockwork/we-need-an-fda-for-algorithms
[2] http://www.hannahfry.co.uk/
#data #algorithms
Как и сама книга "Hello World", её интервью построено не на технических аспектах работы алгоритмов, а на этических и поднимают вопросы, прежде всего, кодификации и проверки моральности алгоритмических решений и ответов на которые мы сами должны найти ответ - готовы ли мы что многие решения в отношении нашей жизни начнут принимать алгоритмы.
Дождёмся ли мы того что решения начнут принимать алгоритмы, а обращение к решению человека будет аппеляцией к решению машины?
Это не только не праздные вопросы про будущее, это ещё и вопросы про настоящее.
Например:
- Готовы ли мы что нам алгоритмы начнут ставить диагноз?
- Готовы ли мы что алгоритмы будут нас судить вместо судей?
- Готовы ли мы что алгоритмы будут принимать решение чью жизнь спасать, пешехода или водителя?
Появление аналога FDA для алгоритмов может оказаться неподъёмной задачей для многих государств, не имея возможности платить экспертам анализирующим алгоритмы зарплаты сравнимые с зарплатами разработчиков алгоритмов можно будет столкнуться с большими сложностями в качестве их оценки. С другой стороны внимание и страхи граждан и регуляторов к тому как алгоритмы оказывают влияние на общество неизбежно приведет к тому что их разработка так или иначе будет подвержена этическим требованиям и их проверке.
Вопрос лишь в том как это будет устроено в итоге.
Ссылки:
[1] http://nautil.us/issue/66/clockwork/we-need-an-fda-for-algorithms
[2] http://www.hannahfry.co.uk/
#data #algorithms
Nautilus
We Need an FDA For Algorithms
In the introduction to her new book, Hannah Fry points out something interesting about the phrase “Hello World.” It’s never…
На Medium статья из Washington Post о использовании Amazon Rekognition System для распознавания лиц полицией [1], с большим числом отсылок на публичные и государственные исследования и внедрение технологий идентификаций по лицам. Алгоритмы пока ещё не дотягивают до того уровня когда им можно безоговорочно доверять причем тут срабатывает страновая специфика и тот же алгоритм Amazon не справляется с точным определением пола для людей с темной кожей и с распознаванием лиц в их случае.
Разница во внедрение систем распознавания лиц в разных странах лишь в публичности, хотя бы частичной, алгоритмов. В США они проходят тестирование в NIST, и иногда производители раскрывают модели распознавания. В Китае, в России, во многих других странах вопрос публичности алгоритмов распознавания лиц и ошибки при идентификации даже не поднимаются.
А что, серьёзно, хоть кто-то ещё верит что к 2025 году останется хоть одна гос-камера не оборудованная идентфикацией лиц? или то что на каждом полицейском не будет камеры в режиме непрерывной записи в течение рабочего дня?
Ссылки:
[1] https://medium.com/thewashingtonpost/amazon-facial-id-software-used-by-police-falls-short-on-accuracy-and-bias-research-finds-43dc6ee582d9
#algorithms
Разница во внедрение систем распознавания лиц в разных странах лишь в публичности, хотя бы частичной, алгоритмов. В США они проходят тестирование в NIST, и иногда производители раскрывают модели распознавания. В Китае, в России, во многих других странах вопрос публичности алгоритмов распознавания лиц и ошибки при идентификации даже не поднимаются.
А что, серьёзно, хоть кто-то ещё верит что к 2025 году останется хоть одна гос-камера не оборудованная идентфикацией лиц? или то что на каждом полицейском не будет камеры в режиме непрерывной записи в течение рабочего дня?
Ссылки:
[1] https://medium.com/thewashingtonpost/amazon-facial-id-software-used-by-police-falls-short-on-accuracy-and-bias-research-finds-43dc6ee582d9
#algorithms
Medium
Amazon Facial-ID Software Used by Police Falls Short on Accuracy and Bias, Research Finds
The new research is raising concerns about how biased results could tarnish the artificial-intelligence technology’s exploding use by…