Blackboard Computing Adventures 💡
■■■■■■▪︎● 8649137520 👆🏼👀 introducing NUMBER OF THE DAY ●︎▪■■■■■■ ⚡ Introducing Number of The Day... Interesting excursions into basic numeric analysis for the young and adults interested in keeping tabs on what interesting numbers jump out of important research...…
# The o-SSI RNG
1. Psi_10 has 9! possible ways it can be shuffleed, true or false?
2. If any of possible shuffles of Psi_10 were chosen at random, and such a shuffle is itself a base-10 o-SSI, how could we use that o-SSI to readily obtain a random element from the new o-SSI algebraically?
- assume the first element of the o-SSI is e1, we could just return that as the result.
- we could decide to always pick the nth element from any shuffled o-SSI as the result, where n<=(base - 1)
the problem with the above two methods though is that they might not properly reflect the overall shuffled structure of the o-SSI.
so, instead, we might prefer to resort to a method that works as such:
1. compute a measure, D € [0,1] that tells is how much shuffled or chaotic the [new] o-SSI is from normal (Psi_10): basically, D is 0 when the o-SSI exactly the same/= Psi_10, meaning there is totally 0 disorder, or no deviation from normal, while it is at 1 when there is total chaos from normal (o-SSI # Psi_10), and a value of 0.5*(1- 0.5*|D|) close to 0.5 is maximum deviation, while close to 0 is minimum deviation.
2. So, given a value of D, merely return result as max[D*(base-1)] so that, D=1 returns 9, D=0 returns 0, D=0.5 returns 5, etc.
To implement such an o-SSI RNG, simply find a random process (perhaps using nature), that can always do something and result in some information that encodes an o-SSI in some random order. Use that signal as the entropy source for the o-SSI RNG, and obtain a random digit from it via the above method, or a longer sequence using the obtained digit as seed to a longer sequence generator.
----[Interesting Problems]
- Is D a kind of probability distribution? Which?
- Is D a probability mass function?
- Is D a cumulative probability function?
- Is D related to Kolmogorov-Smirnov statistic? How?
- Is D a kind of measure?
- D is a ratio of what to what?
- D is a percentage of What?
- Given a D, can we compute some o-SSI for which its D*=D? How?
- Given an o-SSI, can we compute a D for it? How?
is d a good approximation for D? if not, how can we modify it so it correctly implements D?
What happens when we graph d? What of D? Can we develop a graphical way to chart or demonstrate how much D and d varies as the chaos or entropy on an o-SSI varies? How?
- We definitely can use the base-10 o-SSI RNG to generate numbers in any base, how?
#rngs #research #ossi #phd #jwl #combinatorics #sequences #sequencegenerators #measures #distancemeasures #statistics #papersketch
#CREATED:Jun 05, 2025 23:34:18
1. Psi_10 has 9! possible ways it can be shuffleed, true or false?
2. If any of possible shuffles of Psi_10 were chosen at random, and such a shuffle is itself a base-10 o-SSI, how could we use that o-SSI to readily obtain a random element from the new o-SSI algebraically?
- assume the first element of the o-SSI is e1, we could just return that as the result.
- we could decide to always pick the nth element from any shuffled o-SSI as the result, where n<=(base - 1)
the problem with the above two methods though is that they might not properly reflect the overall shuffled structure of the o-SSI.
so, instead, we might prefer to resort to a method that works as such:
1. compute a measure, D € [0,1] that tells is how much shuffled or chaotic the [new] o-SSI is from normal (Psi_10): basically, D is 0 when the o-SSI exactly the same/= Psi_10, meaning there is totally 0 disorder, or no deviation from normal, while it is at 1 when there is total chaos from normal (o-SSI # Psi_10), and a value of 0.5*(1- 0.5*|D|) close to 0.5 is maximum deviation, while close to 0 is minimum deviation.
2. So, given a value of D, merely return result as max[D*(base-1)] so that, D=1 returns 9, D=0 returns 0, D=0.5 returns 5, etc.
To implement such an o-SSI RNG, simply find a random process (perhaps using nature), that can always do something and result in some information that encodes an o-SSI in some random order. Use that signal as the entropy source for the o-SSI RNG, and obtain a random digit from it via the above method, or a longer sequence using the obtained digit as seed to a longer sequence generator.
----[Interesting Problems]
- Is D a kind of probability distribution? Which?
- Is D a probability mass function?
- Is D a cumulative probability function?
- Is D related to Kolmogorov-Smirnov statistic? How?
- Is D a kind of measure?
- D is a ratio of what to what?
- D is a percentage of What?
- Given a D, can we compute some o-SSI for which its D*=D? How?
- Given an o-SSI, can we compute a D for it? How?
d = max([absolute(index(i,Psi_10) - index(i,o-SSI)) for i in range(0,|o-SSI|)]) - average ([absolute(index(i,Psi_10) - index(i,o-SSI)) for i in range(0,|o-SSI|)])
is d a good approximation for D? if not, how can we modify it so it correctly implements D?
What happens when we graph d? What of D? Can we develop a graphical way to chart or demonstrate how much D and d varies as the chaos or entropy on an o-SSI varies? How?
- We definitely can use the base-10 o-SSI RNG to generate numbers in any base, how?
#rngs #research #ossi #phd #jwl #combinatorics #sequences #sequencegenerators #measures #distancemeasures #statistics #papersketch
#CREATED:Jun 05, 2025 23:34:18
JWL // literature
The_Symbol_Set_Identity_paper_Joseph_Willrich_Lutalo_25APR2025.pdf
Media is too big
VIEW IN TELEGRAM
What's coming next??
- Currently exploring options for the rightful home of my PhD, Oxford seems like it.
- Almost done reviewing ACM SLE papers, but not just yet 🤦
- Been working at building my own theory concerning RNGs, that's now almost with.. . In fact, that's our next paper!!
- There might follow more papers RNG related (o-SSI RNG, random collections/the random sort algorithm, a multi-RNG Architecture, etc. )
- The ACM SLE review paper...
- Research paper about Metaverses
- yes, Blackboard Adventures!
- and lots of other ground breaking work from my private research lab.. NOTD, NML, OIP, IPOW,.. etc.
More work is being done than can be directly observed here, however, like our tradition is here on @bclectures, once tis ready, new #research shall be packaged well into a written work and I'll let you know once it's published somewhere 🤞😉
#nuchwezi #universityofoxford #phd #jwl #randomnumbers
- Currently exploring options for the rightful home of my PhD, Oxford seems like it.
- Almost done reviewing ACM SLE papers, but not just yet 🤦
- Been working at building my own theory concerning RNGs, that's now almost with.. . In fact, that's our next paper!!
- There might follow more papers RNG related (o-SSI RNG, random collections/the random sort algorithm, a multi-RNG Architecture, etc. )
- The ACM SLE review paper...
- Research paper about Metaverses
- yes, Blackboard Adventures!
- and lots of other ground breaking work from my private research lab.. NOTD, NML, OIP, IPOW,.. etc.
More work is being done than can be directly observed here, however, like our tradition is here on @bclectures, once tis ready, new #research shall be packaged well into a written work and I'll let you know once it's published somewhere 🤞😉
#nuchwezi #universityofoxford #phd #jwl #randomnumbers
Blackboard Computing Adventures 💡
What's coming next?? - Currently exploring options for the rightful home of my PhD, Oxford seems like it. - Almost done reviewing ACM SLE papers, but not just yet 🤦 - Been working at building my own theory concerning RNGs, that's now almost with.. . In fact…
Foundations_of_Any_Number_Generating_System_and_The_Lu_Number_System.pdf
160.5 KB
PAPER TITLE: Philosophical and Mathematical Foundations of Any Number Generating System and The Lu-Number System
(REVISION: 9 JUNE, 2025)
TAGS: #Research #Physics #InformationTheory #RandomNumbers #InformationGenerators #ProfJWL #Nuchwezi #ComputerScience
(REVISION: 9 JUNE, 2025)
TAGS: #Research #Physics #InformationTheory #RandomNumbers #InformationGenerators #ProfJWL #Nuchwezi #ComputerScience
Blackboard Computing Adventures 💡
Foundations_of_Any_Number_Generating_System_and_The_Lu_Number_System.pdf
PAPER TITLE: Philosophical and Mathematical Foundations of Any Number Generating System and The Lu-Number System
ABSTRACT:
This work sets out to theoretically construct a platform for allowing for the systematic generation of numbers (in any base) from physical (natural or artificial) or non-physical (virtual, conceptual or artificial for example) entropy sources --- ultimately, the purpose is to support the generation of numbers conforming to some preferable distribution, especially the uniform distribution, and thus random numbers. The core of this platform is based on a means of reading raw information from the source of entropy, and then encoding it using an abstract number system we call the Lu-Number System (LNS). Then, starting from that basic LNS number generator --- which shall produce numbers in the LNS base --- lu-Base, more sophisticated generators can then be built atop that --- like those meant to generate higher-order numbers or numbers in common bases such as binary, decimal or base-36. We can then be able to leverage LNS to implement more useful generators such as Random Bit Generators (RBGs), True Random Number Generators (TRNGs) as well as Cryptographically Secure RNGs (CSRNGs) among others. At the moment, this is the condensed edition of that work; thus prepared so it can readily be applicable/usable in theoretical and practical contexts across mathematics, philosophy, but also in various sciences and mathematical disciplines --- especially in Computer Science, its originally intended audience.
TAGS: #Research #Physics #InformationTheory #RandomNumbers #InformationGenerators #ProfJWL #Nuchwezi #ComputerScience
TO CITE:
Lutalo, Joseph Willrich. “Philosophical and Mathematical Foundations of Any Number Generating System and The Lu-Number System” Academia, 2025. https://doi.org/10.6084/m9.figshare.29262749
ABSTRACT:
This work sets out to theoretically construct a platform for allowing for the systematic generation of numbers (in any base) from physical (natural or artificial) or non-physical (virtual, conceptual or artificial for example) entropy sources --- ultimately, the purpose is to support the generation of numbers conforming to some preferable distribution, especially the uniform distribution, and thus random numbers. The core of this platform is based on a means of reading raw information from the source of entropy, and then encoding it using an abstract number system we call the Lu-Number System (LNS). Then, starting from that basic LNS number generator --- which shall produce numbers in the LNS base --- lu-Base, more sophisticated generators can then be built atop that --- like those meant to generate higher-order numbers or numbers in common bases such as binary, decimal or base-36. We can then be able to leverage LNS to implement more useful generators such as Random Bit Generators (RBGs), True Random Number Generators (TRNGs) as well as Cryptographically Secure RNGs (CSRNGs) among others. At the moment, this is the condensed edition of that work; thus prepared so it can readily be applicable/usable in theoretical and practical contexts across mathematics, philosophy, but also in various sciences and mathematical disciplines --- especially in Computer Science, its originally intended audience.
TAGS: #Research #Physics #InformationTheory #RandomNumbers #InformationGenerators #ProfJWL #Nuchwezi #ComputerScience
TO CITE:
Lutalo, Joseph Willrich. “Philosophical and Mathematical Foundations of Any Number Generating System and The Lu-Number System” Academia, 2025. https://doi.org/10.6084/m9.figshare.29262749
figshare
Philosophical and Mathematical Foundations of A Number Generating System: The Lu-Number System
This work sets out to theoretically construct a platform for allowing for the systematic generation of numbers (in any base) from physical or non-physical entropy sources --- ultimately, the purpose is to support the generation of numbers conforming to some…
Blackboard Computing Adventures 💡
PAPER TITLE: Philosophical and Mathematical Foundations of Any Number Generating System and The Lu-Number System ABSTRACT: This work sets out to theoretically construct a platform for allowing for the systematic generation of numbers (in any base) from physical…
NEW Edition of RNG & LNS Paper Ready:
Lutalo, Joseph Willrich. “Philosophical and Mathematical Foundations of Any Number Generating System and The Lu-Number System” Academia, 2025. https://doi.org/10.6084/m9.figshare.29262749
Lutalo, Joseph Willrich. “Philosophical and Mathematical Foundations of Any Number Generating System and The Lu-Number System” Academia, 2025. https://doi.org/10.6084/m9.figshare.29262749
Blackboard Computing Adventures 💡
Photo
Media is too big
VIEW IN TELEGRAM
*Fut. Prof. J. Willrich, [Potential PhD at University of Oxford**] explains the relevance of the Lu-Base and work on LNS-based True Random Number Generators based on natural as well as artificial entropy sources.
### NEW Edition of RNG & LNS Paper Ready:
TAGS: #Research #Physics #InformationTheory #EncodingSystems #RandomNumbers #InformationGenerators #ProfJWL #Nuchwezi #ComputerScience
### NEW Edition of RNG & LNS Paper Ready:
Lutalo, Joseph Willrich. “Philosophical and Mathematical Foundations of Any Number Generating System and The Lu-Number System” Academia, 2025. https://doi.org/10.6084/m9.figshare.29262749
TAGS: #Research #Physics #InformationTheory #EncodingSystems #RandomNumbers #InformationGenerators #ProfJWL #Nuchwezi #ComputerScience
Forwarded from UGANDA
Yes, the notion of mensuration was indeed considered in the LNS paper, though, the LNS RNG doesn't attempt to directly discern/distinguish continuous signals (non-discrete or perhaps real number quantification) but only its presence or absence (nominal mensuration/basic classifier).
Thanks, all peers, seniors and juniors enjoying our research, especially those sending in feedback 🙏😉
Thanks, all peers, seniors and juniors enjoying our research, especially those sending in feedback 🙏😉
Blackboard Computing Adventures 💡
*Fut. Prof. J. Willrich, [Potential PhD at University of Oxford**] explains the relevance of the Lu-Base and work on LNS-based True Random Number Generators based on natural as well as artificial entropy sources. ### NEW Edition of RNG & LNS Paper Ready:…
The Official Preprint for the RNG & LNS paper has also been approved:
KEYWORDS:
#Philosophy; #Foundations; #Information; #Physics; #Mensuration; #Encoding; #Processing; #Numbers; #Bases; #Arithmetic; #Operations; #Symbol #Sets; #Identity; #Quantity; #Meaning
Lutalo, J. W. (2025). Philosophical and Mathematical Foundations of Any Number Generating System and The Lu-Number System. Preprints. https://doi.org/10.20944/preprints202506.0790.v1
`
KEYWORDS:
#Philosophy; #Foundations; #Information; #Physics; #Mensuration; #Encoding; #Processing; #Numbers; #Bases; #Arithmetic; #Operations; #Symbol #Sets; #Identity; #Quantity; #Meaning
Blackboard Computing Adventures 💡
The Official Preprint for the RNG & LNS paper has also been approved: Lutalo, J. W. (2025). Philosophical and Mathematical Foundations of Any Number Generating System and The Lu-Number System. Preprints. https://doi.org/10.20944/preprints202506.0790.v1 `…
---[POTENTIAL PHD Supervisor]
Professor Terry Lyons is the Wallis Professor of Mathematics; he was a founding member (2007) of, and then Director (2011-2015) of, the Oxford Man Institute of Quantitative Finance; he was the Director of the Wales Institute of Mathematical and Computational Sciences (WIMCS; 2008-2011).
Professor Terry Lyons is the Wallis Professor of Mathematics; he was a founding member (2007) of, and then Director (2011-2015) of, the Oxford Man Institute of Quantitative Finance; he was the Director of the Wales Institute of Mathematical and Computational Sciences (WIMCS; 2008-2011).
Forwarded from UGANDA
### WE HAVE A PRESIDENT
The 11th President of Uganda is not clearly listed in available sources, however, Sir. Joseph Willrich Lutalo C.M.R.W, founder of the Internet Party, also IP, has expressed formal interest in serving as the 11th or future president of the Republic of Uganda. Gen. Yoweri Kaguta Museveni had remained in power since 1986.
Since gaining independence in 1962, Uganda has had nine presidents. The first was Sir Edward Mutesa II, who served as a ceremonial president from 1963 to 1966. The longest-serving president was Yoweri Museveni, born September 15, 1944.
#advisory #uic #uio #netizenship #presidency #facts #memo #jwlcmrw #oip #internetparty #globaladvisory
The 11th President of Uganda is not clearly listed in available sources, however, Sir. Joseph Willrich Lutalo C.M.R.W, founder of the Internet Party, also IP, has expressed formal interest in serving as the 11th or future president of the Republic of Uganda. Gen. Yoweri Kaguta Museveni had remained in power since 1986.
Since gaining independence in 1962, Uganda has had nine presidents. The first was Sir Edward Mutesa II, who served as a ceremonial president from 1963 to 1966. The longest-serving president was Yoweri Museveni, born September 15, 1944.
#advisory #uic #uio #netizenship #presidency #facts #memo #jwlcmrw #oip #internetparty #globaladvisory
Blackboard Computing Adventures 💡
---[POTENTIAL PHD Supervisor] Professor Terry Lyons is the Wallis Professor of Mathematics; he was a founding member (2007) of, and then Director (2011-2015) of, the Oxford Man Institute of Quantitative Finance; he was the Director of the Wales Institute of…
Meta-Review of NGT and LNS Theory--JWL--12JUN2025.pdf
2.3 MB
A Meta-Review of The Philosophical and Mathematical Foundations of The Number Generating Theory (NGT) and The Lu-Number System, LNS
A paper of mathematical philosophy[1], published 9th May, 2025 from Nuchwezi theoretician and platform engineering scientist Sir. J. Willrich Lutalo, originally a Ugandan, set forth a novel way to approach the critically important field of machine learning and artificial intelligence, founded on his information processing mechanics expressible using what are known as Lu-Number Expressions, LNE; an information signal encoding system, and operations on them. This paper offers some early reviews and commentaries from several authorities concerning what was put forth in the seminal paper on that new mathematical philosophy of an information processing theory.
KEYWORDS: #Review, Philosophy, Foundations, Information, Physics, Mensuration, Encoding, Processing, Numbers, #rockndraw
A paper of mathematical philosophy[1], published 9th May, 2025 from Nuchwezi theoretician and platform engineering scientist Sir. J. Willrich Lutalo, originally a Ugandan, set forth a novel way to approach the critically important field of machine learning and artificial intelligence, founded on his information processing mechanics expressible using what are known as Lu-Number Expressions, LNE; an information signal encoding system, and operations on them. This paper offers some early reviews and commentaries from several authorities concerning what was put forth in the seminal paper on that new mathematical philosophy of an information processing theory.
KEYWORDS: #Review, Philosophy, Foundations, Information, Physics, Mensuration, Encoding, Processing, Numbers, #rockndraw
Forwarded from UGANDA
A Meta-Review of The Philosophical and Mathematical Foundations of The Number Generating Theory (NGT) and The Lu-Number System, LNS:
A paper of mathematical philosophy[1], published 9th May, 2025 from Nuchwezi theoretician and platform engineering scientist Sir. J. Willrich Lutalo, originally a Ugandan, set forth a novel way to approach the critically important field of machine learning and artificial intelligence, founded on his information processing mechanics expressible using what are known as Lu-Number Expressions, LNE; an information signal encoding system, and operations on them. This paper offers some early reviews and commentaries from several authorities concerning what was put forth in the seminal paper on that new mathematical philosophy of an information processing theory.
FULL-REVIEW: https://www.academia.edu/resource/work/129903686
KEYWORDS: #Review, Philosophy, Foundations, Information, Physics, Mensuration, Encoding, Processing, Numbers
A paper of mathematical philosophy[1], published 9th May, 2025 from Nuchwezi theoretician and platform engineering scientist Sir. J. Willrich Lutalo, originally a Ugandan, set forth a novel way to approach the critically important field of machine learning and artificial intelligence, founded on his information processing mechanics expressible using what are known as Lu-Number Expressions, LNE; an information signal encoding system, and operations on them. This paper offers some early reviews and commentaries from several authorities concerning what was put forth in the seminal paper on that new mathematical philosophy of an information processing theory.
FULL-REVIEW: https://www.academia.edu/resource/work/129903686
KEYWORDS: #Review, Philosophy, Foundations, Information, Physics, Mensuration, Encoding, Processing, Numbers
UGANDA
A Meta-Review of The Philosophical and Mathematical Foundations of The Number Generating Theory (NGT) and The Lu-Number System, LNS: A paper of mathematical philosophy[1], published 9th May, 2025 from Nuchwezi theoretician and platform engineering scientist…
JWL Mini-Lecture: On Implications of Recent Advances with NGT (Number Generation Theory)
https://youtu.be/X16-po6K1es
In this mini-lecture, we get to hear and see what could actually be possible with the use of better number generation theory and technologies when applied in real life problem solving. For those interested in catching up with the research happening, checkout recent papers in the following order:
The NGT & Lu-Numbers Introduced: https://bit.ly/lnspaper
A Review of NGT & LNS: https://bit.ly/ngtreview
#nuchwezi #research #minilecture #computerscience #physics #mathematics #jwl #phd #oxforduniversity
https://youtu.be/X16-po6K1es
In this mini-lecture, we get to hear and see what could actually be possible with the use of better number generation theory and technologies when applied in real life problem solving. For those interested in catching up with the research happening, checkout recent papers in the following order:
The NGT & Lu-Numbers Introduced: https://bit.ly/lnspaper
A Review of NGT & LNS: https://bit.ly/ngtreview
#nuchwezi #research #minilecture #computerscience #physics #mathematics #jwl #phd #oxforduniversity
Blackboard Computing Adventures 💡
■■■■■■▪︎● 8649137520 👆🏼👀 introducing NUMBER OF THE DAY ●︎▪■■■■■■ ⚡ Introducing Number of The Day... Interesting excursions into basic numeric analysis for the young and adults interested in keeping tabs on what interesting numbers jump out of important research...…
Basically, this NUMBER deserves to be put on a pedestal...
In summary, I could genuinely brag about it thus:
In summary, I could genuinely brag about it thus:
I discovered The Number 8649137520. It is a special base-10 o-SSI from other o-SSI, whose factors include all terms in the base-10 n-SSI except 0 and 7. It is a magical number too; creates chaos from order.
A JWL Mini-Lecture: Making a Wind Sensor from Empty Plastic Bottles:
https://youtu.be/6VmPIZBh9Bw
------[
In today's JWL Mini-Lecture, we're shifting to some Creative Engineering project: applying some of our recent research concerning RNGs and Entropy Sources, we get to craft a sensor that generates sounds from the dynamic activity of wind currents. The lecture shows the creative process from defining the project blueprint, collecting raw materials, producing/crafting to evaluating the final finished product. You can find and buy these kinds of crafts from our souvenir shop: MenuzaBytes.com | SUBSCRIBE to our channel for more: https://YouTube.com/@1JWL
]------
#jwlminilectures #crafts #sensors #recycling #creativeengineering
https://youtu.be/6VmPIZBh9Bw
------[
In today's JWL Mini-Lecture, we're shifting to some Creative Engineering project: applying some of our recent research concerning RNGs and Entropy Sources, we get to craft a sensor that generates sounds from the dynamic activity of wind currents. The lecture shows the creative process from defining the project blueprint, collecting raw materials, producing/crafting to evaluating the final finished product. You can find and buy these kinds of crafts from our souvenir shop: MenuzaBytes.com | SUBSCRIBE to our channel for more: https://YouTube.com/@1JWL
]------
#jwlminilectures #crafts #sensors #recycling #creativeengineering