Blackboard Computing Adventures πŸ’‘
9 subscribers
786 photos
73 videos
61 files
262 links
Welcome to BCA ⚑⚑ our Virtual Learning Space. Mostly Blackboard snapshots, sometimes with explanatory/exploratory and analytical notes. Open teaching efforts by Fut. Prof. JWL at his BC gate on 1st Cwa Road and HQ research dissemination.
Download Telegram
TODAY we have invested more into STATISTICAL ANALYSIS using TEA. In particular, consider the case of wanting to visualize a dataset using a basic frequency bar-chart. We might for example have a dataset such as:


12,24,95,18,85,27,97,39,80,20,65,24,93,82,85,81,52,62,20,89


Which, when processed by the following TEA program:

A Bar-GRAPH Generator
i:{12, 24, 95, 18, 85, 27, 97, 39, 80, 20, 65, 24, 93, 82, 85, 81, 52, 62, 20, 89} #some sample data
v:vSEQUENCE #stash comma-del sequence
#count the values...
d:[ ] | d!:{,}| v: | v!: | x!:{+1} | r.: | v:vNSEQ

#get the word MSS
y:vSEQUENCE | h:, | d:, | u: | v:vSEQ_MSS
#but we would rather present a graph with items sorted based on order
#thus, override MSS with sorted one
#y:vSEQ_MSS | o: | v:vSEQ_MSS

#initialize graph structure as empty graph
v:vGRAPH:{}

#-----| For each item in the MSS, obtain its frequency |---
l:lBUILD_GRAPH
y:vSEQ_MSS
d:[ ].*$ | v:vITEM #first, get the item
#build a lookup pattern [,]?N[,]?
y:vITEM | x:{[,]?} | x!:{[,]?} | v:vITEM_REGEX
#use it to reduce original sequence to only instances of item..
y:vSEQUENCE | d*!:vITEM_REGEX
#remove extraneous commas
r!:[,]+:, | d:^, | d:,$
#count instances of item then..
d!:{,}| v: | v!: | x!:{+1} | r.: | v:vNITEM
#build the visual for item for the graph structure
#N:--...N-times
v:vGRAPH_ELEMENT:{-}
v:vGRAPH_ITEM:{} | x*!:vGRAPH_ITEM:vITEM | x!:{:} | v:vGRAPH_ITEM
v:vN_ITEM_GRAPH_LEN:{0}
l:lSTART_ITEM_GRAPH
x*!:vGRAPH_ELEMENT:vGRAPH_ITEM | v:vGRAPH_ITEM
y:vN_ITEM_GRAPH_LEN | x!:{+1} | r.: | v:vN_ITEM_GRAPH_LEN
#build and run test...
y:vN_ITEM_GRAPH_LEN | x!:{==} | x*!:vNITEM | r.: | f:true:lDONE_ITEM_GRAPH:lSTART_ITEM_GRAPH
l:lDONE_ITEM_GRAPH
#add item graph to main graph...
y:vGRAPH | x!:{
}|x*!:vGRAPH_ITEM | v:vGRAPH #update graph
#remove this item from the MSS, and then loop...
y:vSEQ_MSS
d!:[ ].*$ | t!.: | v:vSEQ_MSS #first, get the item
#if mss empty, finish, otherwise loop..
f:^$:lGRAPH_READY:lBUILD_GRAPH
l:lGRAPH_READY
y:vGRAPH #present final graph :)


Would give us a graph such as:


:-
24:--
85:--
20:--
12:-
95:-
18:-
27:-
97:-
39:-
80:-
65:-
93:-
82:-
81:-
52:-
62:-
89:-


So, with that foundation, we might build more sophisticated statistical analysis tools as we shall soon come to see! That's it for now. #statistics #analysis #descriptivestatistics #teaapplications
Blackboard Computing Adventures πŸ’‘
TODAY we have invested more into STATISTICAL ANALYSIS using TEA. In particular, consider the case of wanting to visualize a dataset using a basic frequency bar-chart. We might for example have a dataset such as: 12,24,95,18,85,27,97,39,80,20,65,24,93,82…
The v1 of our STATISTICAL Analysis Tool (SAT) is now accessible online.

Some sample outputs are of the kind shown here...

The DATA ANALYSIS:
====================
RANGE:12-97 | MODE:24 | MEDIAN: | MEAN:57.5 | VARIANCE:922.85 | STANDARD DEVIATION:30.378446306550966 | MODAL SEQUENCE:24 85 20 12 95 18 27 97 39 80 65 93 82 81 52 62 89
====================
The DATA:
====================
12,24,95,18,85,27,97,39,80,20,65,24,93,82,85,81,52,62,20,89
====================
Finished summarizing the data using measures and statistics.

And for drawing graphs...

The DATA ANALYSIS:
====================
0:-----
1:----
2:----
3:-----
4:-
5:--
6:---
7:----------
8:-------
9:-
10:-------
====================
The DATA:
====================
7,5,6,7,8,10,3,8,1,7,3,10,7,0,3,2,7,8,2,10,8,8,10,8,10,1,3,7,2,7,1,4,0,5,8,1,3,10,0,9,7,6,7,8,0,10,6,2,7,0
====================
Finished summarizing the data visually.

Go online and try it out with your own dataset: https://tea.nuchwezi.com

#statistics #analysis
Blackboard Computing Adventures πŸ’‘
The v1 of our STATISTICAL Analysis Tool (SAT) is now accessible online. Some sample outputs are of the kind shown here... The DATA ANALYSIS: ==================== RANGE:12-97 | MODE:24 | MEDIAN: | MEAN:57.5 | VARIANCE:922.85 | STANDARD DEVIATION:30.378446306550966…
Final (well.. v.2) of our very generally useful Statistical Analysis Tool (SAT) implemented using TEA (Transforming Executable Alphabet) language, and which program one can run on any operating system with TEA installed, is as such:

SAT v2
#########################################
# STATISTICAL ANALYSIS TOOL (SAT) v.2
#---------------------------------------
# An interactive program for analyzing
# numeric data using 3 analysis modes:
# descriptive/visual, exploratory and predictive.
#########################################

#first, pick any user/externally provided data...
v:vDATA

#====| CONSTANTS |====
v:vHLINE:{
--------------------
}
v:vHHLINE:{
====================
}
v:vPROMPT_METHOD:{Select Analysis Method: [1] Descriptive | [2] Exploratory | [3] Predictive
}
v:vANALYSIS_MSG:{No Analysis Done Yet!} | y:vANALYSIS_MSG | v:vRESULT
z.:PLATFORM | v:vPLATFORM #store underlying platform/environment...

#in case no data was presented, use hardcoded dataset...
y:vDATA
i:{12,24,95,18,85,27,97,39,80,20,65,24,93,82,85,81,52,62,20,89} | v:vDATA
j:lPREPROCESS_DATA

#prompt for data...
l:lPROMPT_FOR_DATA
i!:{Please Enter [qQ] to Quit, otherwise a [space or] comma-delimited sequence of numbers:} | i*: | v:vDATA

#----| should we quit? |---
f:^[qQ]$:lQUIT

#----| pre-process and clean data |---
l:lPREPROCESS_DATA
g: #eliminate white-space
r:,]$:] #fix final comma from some TDT generators
d!:[\d ,] #apply filter
g:,:[ ] | r!:,,*:, #enforce strict , delimiter
v:vDATA_CLEAN #for presentation
x:,|x!:, #to ease lookups
v:vDATA #override

#----| ensure data conforms to structure required otherwise flag error |---
f!:^,\d+(,\d+)*,$:lERROR_INVALID_DATA:lVALID_DATA

l:lERROR_INVALID_DATA
i!:{SORRY, but DATA entered was INVALID.} | i*:
j:lPROMPT_FOR_DATA # [re-]prompt for correct data

#we have proper data, might proceed...
l:lVALID_DATA

#----| present clean dataset and prompt for analysis method |---
l:lANALYSIS_PROMPT
y:vDATA_CLEAN | x*:vHHLINE | x:{The DATA:} |x*!:vHHLINE | x*!:vPROMPT_METHOD | v:vPROMPT | i*: | v:vANS


#check if we got meaningful answer, otherwise re-prompt
t!.: | f:^$:lANALYSIS_PROMPT | f!:^[123]$:lANALYSIS_PROMPT

#process response then...
f:1:lPROCESS_ANALYSIS_DESC | f:2:lPROCESS_ANALYSIS_EXPL | f:3:lPROCESS_ANALYSIS_PRED

####| START PROCESSING ANALYTICS |####
v:vANALYSIS_RESULT:{}


#----| perform visual/descriptive analysis |---
l:lPROCESS_ANALYSIS_DESC

y:vDATA
v:vSEQUENCE #stash comma-del sequence
#count the values...
d:[ ] | d!:{,}| v: | v!: | x!:{+1} | r.: | v:vNSEQ

#get the word MSS
y:vSEQUENCE | h:, | d:, | u: | t.: | v:vSEQ_MSS
#but we would rather present a graph with items sorted based on order
#thus, override MSS with sorted one
y:vSEQ_MSS | o: | v:vSEQ_MSS

#initialize graph structure as empty graph
v:vGRAPH:{}

#-----| For each item in the MSS, obtain its frequency |---
y:vSEQUENCE | r!:{,}:{,,} | v:vLOOKUP_SEQUENCE #for use in graph computations
l:lBUILD_GRAPH
y:vSEQ_MSS
Blackboard Computing Adventures πŸ’‘
The v1 of our STATISTICAL Analysis Tool (SAT) is now accessible online. Some sample outputs are of the kind shown here... The DATA ANALYSIS: ==================== RANGE:12-97 | MODE:24 | MEDIAN: | MEAN:57.5 | VARIANCE:922.85 | STANDARD DEVIATION:30.378446306550966…


d:[ ].*$ | v:vITEM #first, get the item
#build a lookup pattern (,|[^0-9])N(,|[^0-9])
y:vITEM | x:{(,|[^0-9])} | x!:{(,|[^0-9])} | v:vITEM_REGEX
#use it to reduce original sequence to only instances of item..
y:vLOOKUP_SEQUENCE | d*!:vITEM_REGEX
#remove extraneous commas
r!:[,]+:, | d:^, | d:,$
#count instances of item then..
d!:{,}| v: | v!: | x!:{+1} | r.: | v:vNITEM
#build the visual for item for the graph structure
#N:--...N-times
v:vGRAPH_ELEMENT:{-}
v:vGRAPH_ITEM:{} | x*!:vGRAPH_ITEM:vITEM | x!:{:} | v:vGRAPH_ITEM
v:vN_ITEM_GRAPH_LEN:{0}
l:lSTART_ITEM_GRAPH
x*!:vGRAPH_ELEMENT:vGRAPH_ITEM | v:vGRAPH_ITEM
y:vN_ITEM_GRAPH_LEN | x!:{+1} | r.: | v:vN_ITEM_GRAPH_LEN
#build and run test...
y:vN_ITEM_GRAPH_LEN | x!:{==} | x*!:vNITEM | r.: | f:true:lDONE_ITEM_GRAPH:lSTART_ITEM_GRAPH
l:lDONE_ITEM_GRAPH
#add item graph to main graph...
y:vGRAPH | x!:{
}|x*!:vGRAPH_ITEM | v:vGRAPH #update graph
#remove this item from the MSS, and then loop...
y:vSEQ_MSS
d!:[ ].*$ | t!.: | v:vSEQ_MSS #first, get the item
#if mss empty, finish, otherwise loop..
f:^$:lGRAPH_READY:lBUILD_GRAPH
l:lGRAPH_READY
y:vGRAPH #present final graph :)
#affix graph to result
k!:^[ ]*$ #kick-out blank lines
v:vANALYSIS_RESULT

#what did we do?
v:vANALYSIS_MSG:{Finished summarizing the data visually.}

j:lDONE_PROCESSING #goto present results...


#----| perform numerical/exploratory analysis |---
l:lPROCESS_ANALYSIS_EXPL
v:vRANGE:{}
v:vMODE:{}
v:vMEDIAN:{}
v:vMEAN:{}
v:vVARIANCE:{}
v:vSDEVIATION:{}
v:vMSS:{}

y:vDATA
v:vSEQUENCE #stash comma-del sequence
#count the values...
d:[ ] | d!:{,}| v: | v!: | x!:{+1} | r.: | v:vNSEQ

#get the word MSS
y:vSEQUENCE | h:, | d:, | u: | t.: | v:vSEQ_MSS | v:vMSS

#store data sequence we'll use in external functions
y:vSEQUENCE | d:^,:,$ | x:[ | x!:] | v:vARRAY_SEQUENCE

#compute the statistics...

#===| compute RANGE |
#get the word MSS sorted numerically
y:vMSS | o: | v:vMSS_SORTED
y:vMSS_SORTED | d:[ ].*$
v:vITEM_MIN #store smallest value
y:vMSS_SORTED | m: | d:[ ].*$
v:vITEM_MAX #store largest value
y:vITEM_MIN | x!:{-} | x*!:vITEM_MAX | v:vRANGE

#===| compute MODE|
#get the normal word MSS
y:vMSS | d:[ ].*$
v:vMODE #store most frequent value

#===| compute MEDIAN|
y:vPLATFORM
f:WEB:lWEB_MEDIAN:lCLI_MEDIAN
l:lWEB_MEDIAN #to compute median via JavaScript
y:vARRAY_SEQUENCE
v:vCMD:{const median = arr => (sorted => (sorted[sorted.length >> 1] + sorted[(sorted.length - 1) >> 1]) / 2)([...arr].sort((a, b) => a - b));median(JSON.parse(AI));}
z*!:vCMD
j:lMEDIAN_READY

l:lCLI_MEDIAN #to compute median via Python

i!:{python3 -c "import json; AI='}
x*!:vARRAY_SEQUENCE
x!:{'; a=json.loads(AI); print(sorted(a)[len(a)//2] if len(a)%2 else sum(sorted(a)[len(a)//2-1:len(a)//2+1])/2)"}
v:vCMD | z*:vCMD
j:lMEDIAN_READY

l:lMEDIAN_READY
v:vMEDIAN


#===| compute MEAN|
y:vPLATFORM
f:WEB:lWEB_MEAN:lCLI_MEAN
l:lWEB_MEAN #to compute mean via JavaScript
y:vARRAY_SEQUENCE
z:{const mean = arr => arr.reduce((sum, val) => sum + val, 0) / arr.length;
mean(JSON.parse(AI));}
j:lMEAN_READY

l:lCLI_MEAN #to compute mean via Python

i!:{python3 -c "import json; AI='}
x*!:vARRAY_SEQUENCE
x!:{'; a=json.loads(AI); print(sum(a)/len(a))"}
v:vCMD | z*:vCMD
j:lMEAN_READY

l:lMEAN_READY
v:vMEAN


#===| compute population VARIANCE|
y:vPLATFORM
f:WEB:lWEB_VARIANCE:lCLI_VARIANCE
l:lWEB_VARIANCE #to compute variance via JavaScript
y:vARRAY_SEQUENCE
z:{const variance = arr => (m => arr.reduce((s, x) => s + (x - m) ** 2, 0) / arr.length)(arr.reduce((a, b) => a + b, 0) / arr.length);
variance(JSON.parse(AI));}
j:lVARIANCE_READY

l:lCLI_VARIANCE #to compute variance via Python

i!:{python3 -c "import json; AI='}
x*!:vARRAY_SEQUENCE
x!:{'; a=json.loads(AI); m=sum(a)/len(a); print(sum((x - m)**2 for x in a)/len(a))"}
v:vCMD | z*:vCMD
j:lVARIANCE_READY

l:lVARIANCE_READY
v:vVARIANCE


#===| compute STANDARD DEVIATION|
y:vPLATFORM
f:WEB:lWEB_SDEVIATION:lCLI_SDEVIATION
l:lWEB_SDEVIATION #to compute standard deviation via JavaScript
y:vVARIANCE
z:{Math.sqrt(Number(AI));}
j:lSDEVIATION_READY

l:lCLI_SDEVIATION #to compute standard deviation via Python
Blackboard Computing Adventures πŸ’‘
The v1 of our STATISTICAL Analysis Tool (SAT) is now accessible online. Some sample outputs are of the kind shown here... The DATA ANALYSIS: ==================== RANGE:12-97 | MODE:24 | MEDIAN: | MEAN:57.5 | VARIANCE:922.85 | STANDARD DEVIATION:30.378446306550966…


i!:{python3 -c "import math; print(math.sqrt(}
x*!:vVARIANCE | t.:
x!:{))"}
v:vCMD | z*:vCMD
j:lSDEVIATION_READY

l:lSDEVIATION_READY
v:vSDEVIATION


i!:{RANGE:} | x*!:vRANGE | x!:{ | MODE:} | x*!:vMODE | x!:{ | MEDIAN:} | x*!:vMEDIAN | x!:{ | MEAN:} | x*!:vMEAN | x!:{ | VARIANCE:} | x*!:vVARIANCE | x!:{ | STANDARD DEVIATION:} | x*!:vSDEVIATION | x!:{ | MODAL SEQUENCE:} | x*!: vMSS
v:vANALYSIS_RESULT

#what did we do?
v:vANALYSIS_MSG:{Finished summarizing the data using measures and statistics.}
j:lDONE_PROCESSING #goto present results...


#----| perform numerical/predictive analysis |---
l:lPROCESS_ANALYSIS_PRED

y:vDATA
v:vSEQUENCE #stash comma-del sequence

#===| compute probabilistic extrapolation...|
# in our list extrapolation methods here, we are going to
#assume the dataset conforms to a normal distribution
#and so we shall do basic probabilistic prediction of
#the next value past the end of the dataset given
#the nature of the sample (its mean and standard deviation)
y:vSEQUENCE | d:^,:,$ | x:[ | x!:] | v:vARRAY_SEQUENCE

y:vPLATFORM
f:WEB:lWEB_PREDICTION:lCLI_PREDICTION
l:lWEB_PREDICTION
y:vARRAY_SEQUENCE
v:vCMD:{const nextProbable = arr => {
let m = arr.reduce((a, b) => a + b, 0) / arr.length;
let s = Math.sqrt(arr.reduce((a, x) => a + (x - m) ** 2, 0) / arr.length);
return m + s * (Math.random() * 2 - 1);
};nextProbable(JSON.parse(AI));}
z*!:vCMD
j:lPREDICTION_READY

l:lCLI_PREDICTION
i!:{python3 -c "import json, random, math; AI='}
x*!:vARRAY_SEQUENCE
x!:{'; a=json.loads(AI); m=sum(a)/len(a); s=math.sqrt(sum((x-m)**2 for x in a)/len(a)); print(m + s * (random.random()*2 - 1))"}
v:vCMD | z*:vCMD
j:lPREDICTION_READY

l:lPREDICTION_READY
v:vPREDICTION

i!:{Assuming Normal Distribution, NEXT value past end of dataset: } | x*!:vPREDICTION |
v:vANALYSIS_RESULT

#what did we do?
v:vANALYSIS_MSG:{Finished extrapolating the data.}

l:lDONE_PROCESSING
#present results...
y:vANALYSIS_RESULT | x*!:vHHLINE | x!:{The DATA:} | x*!:vHHLINE |
x*!:vDATA_CLEAN | x*:vHHLINE | x:{The DATA ANALYSIS:} |x*!:vHHLINE | x*!:vANALYSIS_MSG | v:vPROMPT | v:vRESULT | i*: | j:lPROMPT_FOR_DATA #not yet finished ;)

################################
#Finally, Quit, gracefully...
################################
l:lQUIT
y:vRESULT


#statisticalanalysis #statistics #calculator #graphing #forecasting @bclectures #nuchweziresearch #thephds
Media is too big
VIEW IN TELEGRAM
Perhaps End of Year Blackboard Adventures... Came from the Community itself! 🀭

Please watch, and react. This is an interesting evidence there's been some serious attentive students all along.βœ“
Best regards from J. Willrich Lutalo Cwa Mukama Rwemera Weira and the band of U curious netizens ✨✨

Merry #Christmas and enjoy memorable, transformative holidays!

i!:{#nuchweziresearch}|d:{#}|h:re
Forwarded from UGANDA
As final, last and important Xmas trivia... Perhaps also a lesson in history concerning Christmas and especially the date 25 DECEMBER; it shall be surprising to some (especially none believers), that one of science and mathematics' greatest minds of all time, Sir Isaac Newton, was actually born on Christmas day! πŸ™ŒπŸ˜†πŸ€£πŸ™πŸŽ‰πŸΎ I discovered this while reading a classic book on The Calculus earlier today. However, also find the details below...


🧠 Isaac Newton was born on:

πŸ“… 4 January 1643 (Gregorian calendar)
πŸŽ„ 25 December 1642 (Julian calendar, used in England at the time)


πŸ—“οΈ Why Two Dates?

England used the Julian calendar until 1752. When the Gregorian calendar was adopted, dates shifted forward by 11 days. So:

- Newton’s birth was recorded as 25 December 1642 (Julian)
- But in modern terms, we recognize it as 4 January 1643 (Gregorian)

---

πŸ“š REFERENCE:
1. Wikipedia – Isaac Newton : https://en.wikipedia.org/wiki/Isaac_Newton

That's all dear netizens! See u in 2026!

πŸ‘‹πŸ˜‰πŸŽ„πŸƒβš‘πŸ₯³πŸŽβœ¨βœ¨
Blackboard Computing Adventures πŸ’‘
i!:{python3 -c "import math; print(math.sqrt(} x*!:vVARIANCE | t.: x!:{))"} v:vCMD | z*:vCMD j:lSDEVIATION_READY l:lSDEVIATION_READY v:vSDEVIATION i!:{RANGE:} | x*!:vRANGE | x!:{ | MODE:} | x*!:vMODE | x!:{ | MEDIAN:} | x*!:vMEDIAN | x!:{ | MEAN:} | x*!:vMEAN…
Today we have advanced TEA programming by such a great deal!

With version 3 of the Statistical Analysis Tool, we are able to...

1. This tool works well on WEB and Commandline.
2. Shall help you summarize your data visually.
3. Shall help you analyze the data via standard statistics.
4. Shall help you extrapolate/predict beyond your data.

And so that, with an example dataset such as...

2, 4, 8, 16

And selecting the predictive analysis method 3 (non-linear regression), our TEA program can then produce the following results..

The DATA ANALYSIS:
====================
Computed Non-Linear Model: y = 0.3333*t^3 + -1.0000*t^2 + 2.6667*t + 0.0000
The predicted value at t = 5 is 30.00, and so that, with a value of r2 = 1.0000, this model explains ~100% of the data.
====================
The DATA:
====================
2,4,8,16
====================
Finished extrapolating the data.

That's soo incredible! The natural next value should have been 32 (2^5). But that's not all.. we can also use linear regression where it makes sense..

The DATA ANALYSIS:
====================
Computed Linear Model: y = 4.6t + -4
The NEXT value at t=5 is 19
The R2 (coefficient of determination) 0.92 means this model explains only ~92% of the data.
====================
The DATA:
====================
2,4,8,16
====================
Finished extrapolating the data.

And if we test it on predicting tricky sequences such as the Fibonacci Numbers, yes, it does perform quite impressively!!

The DATA ANALYSIS:
====================
Computed Non-Linear Model: y = 0.0833*t^3 + -0.3929*t^2 + 1.5238*t + -0.2000
The predicted value at t = 6 is 12.80, and so that, with a value of r2 = 0.9995, this model explains ~100% of the data.
====================
The DATA:
====================
1,2,3,5,8
====================
Finished extrapolating the data.

πŸ₯³βš‘πŸƒπŸ™ŒπŸ˜† Go checkout out the SAT program as part of the standard TEA programs via https://tea.nuchwezi.com

OR directly load and study or modify it via:

http://bit.ly/teasatapp

🎁🍩πŸ”₯πŸ”₯πŸ˜­πŸ‘‹πŸ₯°πŸ€­β˜•πŸ’šπŸ™Œ
Found an interesting historical video about one of the people that made today's tech tools we enjoy possible...
Blackboard Computing Adventures πŸ’‘
Today we have advanced TEA programming by such a great deal! With version 3 of the Statistical Analysis Tool, we are able to... 1. This tool works well on WEB and Commandline. 2. Shall help you summarize your data visually. 3. Shall help you analyze the…
With TEA v1.2.9 a new standard application example has been made available... It's called RU: RANKING UTILITY. And its core Use-Case is to help rank or sort numeric datasets by some user specified criteria.

An example of what it can accomplish can be gleaned from the following example output:

----------***----------
ORIGINAL DATA:
w:66,g:9,t:0.6,s:5e4
----------***----------
RU Processing Results:
----------***----------
DESC-SORTED and POSITIONIFIED LABELLED-DATA:
1st=s:5e4, 2nd=w:66, 3rd=g:9, 4th=t:0.6

Another example...

----------***----------
ORIGINAL DATA:
E:45,A:3.2121,LABEL_1:1,C:-5,88:5,TEST_ty:2,A:5
----------***----------
RU Processing Results:
----------***----------
DESC-SORTED LABELLED-DATA:
E:45, 88:5, A:5, A:3.2121, TEST_ty:2, LABEL_1:1, C:-5

#dataprocessing #numericalprocessing #sorting #ranking #scoring #basicutilities #teaprogramming
Blackboard Computing Adventures πŸ’‘
With TEA v1.2.9 a new standard application example has been made available... It's called RU: RANKING UTILITY. And its core Use-Case is to help rank or sort numeric datasets by some user specified criteria. An example of what it can accomplish can be gleaned…
TEA v1.3.0 introduced an important fix to the implementation of the P!: command space, and with that, also introduces a great example application for the use of RSG (Random Sequence Generators).

The special case covered deals with so-called Vowel Hymns, concerning which, we now have a complete generic TEA application for the generation of short but compelling ones such as we can see in the examples...

uu i aoua
eia e i ei
ooiaaaiuii
uaeo ouauu
euuai eae
oiooiuai a
Blackboard Computing Adventures πŸ’‘
or... aoaiu ieia aiioaooia uio iiaoi aeu oi oa iaeo aiiuu eia ooi oe
And the TEA program behind these is as..

#############################################
# RANDOM VOWEL HYMN GENERATOR v1
#############################################
# Though legit vowel hymns ought be generated
# based on transforming the text of legit hymns
# or words, this generator instead generates
#such hymns based on nothing really, but the
# outputs shall read and feel like legitimate
#vowel hymns nonetheless.
#-------------------------------------------
# For Theory: https://bit.ly/grimoirelumtauto
# For Example: https://www.youtube.com/watch?v=p_THWo4MjIU
##############################################
v:vLINES:5 | v:vI:0 | v:vHYMN:{}
v:vLIMIT:10 | v:vGLUE:{ } | v:vALPHABET:{aeiou }
l:LOOP
p*!:vLIMIT:vGLUE:vALPHABET | v:vLINE #generate and store random string
g*:{
}:vHYMN:vLINE | v:vHYMN #add it to the hymn
y:vI | x!:{+1} | r.: | v:vI
y:vI | x!:{>} | x*!:vLINES | r.: | f:^true$:FIN:LOOP #test if we must finish
l:FIN | y:vHYMN | k!:^$ #return clean hymn

#teaprogramming #basicutilities #code #vowelhymns
Forwarded from UGANDA
Core UGANDA Internet Community - YEAR REVIEW for 2025.pdf
111.9 KB
▐▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
▐ UGANDA Internet Community
β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€β–€
Highlights & Review of 2025
▐▐▐▐▐▐▐▐▐▐▐▐▐▐▐▐▐▐▐▐▐▐▐▐
ABOUT THIS YEAR REVIEW:

+ REVIEW DATE: 31 DEC 2025
+ REVIEWER: H.B. Joseph Willrich Lutalo C.M.R.W. (Founder and President Internet Party, UIC, Nuchwezi Research)

#reports #reviews #internetparty #ugandainternetcommunity #uic #proceedings #yearreview
Forwarded from UGANDA
πŸ‡ΊπŸ‡¬βœ¨πŸ™Œ Happy New Year Everybody!!!
Yes... We are finally in 2026! And sure.. take your seats students, readers, researchers and writers.. except those that must do the talking and teaching.. for those.. please stand up!! Time to usher in the future...

Welcome to Blackboard Computing Adventures 2026