NASA's Astronomy Picture of the Day
17.4K subscribers
10.4K photos
361 videos
1 file
10.7K links
To find and view past APODs, tap here:
t.me/apodQA/3

NASA's APOD presence in Telegram
🌐apod.nasa.gov

Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.
Download Telegram
2001 August 17

The 47 Ursae Majoris System
Illustration Credit:
Copyright 2001 Lynette Cook

Watching and waiting, astronomers have uncovered the presence of more than 70 planets orbiting stars other than the Sun. So far almost all these extrasolar planets have crazy elongated orbits, lie uncomfortably close to their parent stars, or are found in bizarre, inhospitable systems. Yet a reported new planet discovery indicates for the first time that a nearby sun-like star, 47 Ursae Majoris (47 UMa), has at least two planets in nearly circular orbits more reminiscent of Jupiter and Saturn in our own familiar Solar System. The planets are too distant and faint to be photographed directly. Still, 13 years of spectroscopic observations of 47 UMa have revealed the wobbling signature of a second planet intertwined with one previously known. In this artist's illustration, the worlds of 47 UMa hang over the rugged volcanic landscape of a hypothetical moon. The moon orbits the newly discovered planet, imagined here with Saturn-like rings, while the previously known planet is visible as a tiny crescent, close to the yellowish star. Closer still to 47 UMa is another tiny dot, a hypothetical Earth-like water world. About 51 light-years distant, 47 UMa can be found in planet Earth's sky near the Big Dipper.
2001 August 18

Phobos: Doomed Moon of Mars
Credit:
Viking Project, JPL, NASA
Image mosaic by Edwin V. Bell II (NSSDC/Raytheon ITSS)

Mars, the red planet named for the Roman god of war, has two tiny moons, Phobos and Deimos, whose names are derived from the Greek for Fear and Panic. These Martian moons may well be captured asteroids originating in the main asteroid belt between Mars and Jupiter or perhaps from even more distant reaches of the Solar System. In this 1978 Viking 1 orbiter image, the largest moon, Phobos, is indeed seen to be a heavily cratered asteroid-like object. About 17 miles across, Phobos really zips through the Martian sky. Actually rising above Mars' western horizon and setting in the east, it completes an orbit in less than 8 hours. But Phobos is doomed. Phobos orbits so close to Mars, (about 3,600 miles above the surface compared to 250,000 miles for our Moon) that gravitational tidal forces are dragging it down. In 100 million years or so it will likely crash into the surface or be shattered by stress caused by the relentless tidal forces, the debris forming a ring around Mars.
2001 August 19

Mercury: A Cratered Inferno
Credit:
Mariner 10, NASA

Mercury's surface looks similar to our Moon's. Each is heavily cratered and made of rock. Mercury's diameter is about 4800 km, while the Moon's is slightly less at about 3500 km (compared with about 12,700 km for the Earth). But Mercury is unique in many ways. Mercury is the closest planet to the Sun, orbiting at about 1/3 the radius of the Earth's orbit. As Mercury slowly rotates, its surface temperature varies from an unbearably cold -180 degrees Celsius to an unbearably hot 400 degrees Celsius. The place nearest the Sun in Mercury's orbit changes slightly each orbit - a fact used by Albert Einstein to help verify the correctness of his then newly discovered theory of gravity: General Relativity. The above picture was taken by the only spacecraft ever to pass Mercury: Mariner 10 in 1974.
2001 August 20

The Lagoon Nebula in Three Colors
Credit & Copyright:
R. Barba, N. Morrell et al. (UNLP), CTIO, NOAO, NSF

The bright Lagoon Nebula is home to a diverse array of astronomical objects. Particularly interesting sources include a bright open cluster of stars and several energetic star-forming regions. When viewed by eye, cluster light is dominated by an overall red glow that is caused by luminous hydrogen gas, while the dark filaments are caused by absorption by dense lanes of dust. The above picture, from the Curtis-Schmidt Telescope, however, shows the nebula's emission in three exact colors specifically emitted by hydrogen, oxygen, and sulfur. The Lagoon Nebula, also known as M8 and NGC 6523, lies about 5000 light-years away. The Lagoon Nebula can be located with binoculars in the constellation of Sagittarius spanning a region over three times the diameter of a full Moon.
2001 August 21

Dark Spots on Neptune
Credit:
Voyager 2 Team, NASA

Neptune has spots. The Solar System's outermost gas giant shows a nearly uniform blue hue created by small amounts of methane drifting in a thick atmosphere of nearly colorless hydrogen and helium. Dark spots do appear, however, that are anti-cyclones: large high-pressure systems that swirl in Neptune's cold cloud tops. Two dark spots are visible in the above picture taken by the robot Voyager 2 spacecraft in 1989: an Earth-sized Great Dark Spot located on the far left, and Dark Spot 2 located near bottom. A bright cloud dubbed Scooter accompanies the Great Dark Spot. Recent computer simulations indicate that scooters are methane clouds that might commonly be found near dark spots. Subsequent images of Neptune by the Hubble Space Telescope in 1994 indicated that both of these dark spots had dissipated, but another had been created.
2001 August 22

The Bubbling Cauldron of NGC 3079
Credit:
Gerald Cecil (UNC/Chapel Hill) et al., NASA

Edge-on spiral galaxy NGC 3079 is a mere 50 million light-years away toward the constellation Ursa Major. Shown in this stunning false-color Hubble Space Telescope image, the galaxy's disk - composed of spectacular star clusters in winding spiral arms and dramatic dark lanes of dust - spans some 70,000 light-years. Still, NGC 3079's most eye-catching features are the pillars of gas which tower above a swirling cosmic cauldron of activity at the galaxy's center. Seen in the close-up inset at lower right, the pillars rise to a height of about 2,000 light-years and seem to lie on the surface of an immense bubble rising from the galactic core. Measurements indicate that the gaseous pillars are streaming away from the core at 6 million kilometers per hour. What makes this galaxy's cauldron bubble? Astronomers are exploring the possibility that the superbubble is formed by winds from massive stars. If so, these massive stars were likely born all at once as the galactic center underwent a sudden burst of star formation.
2001 August 23

Distortion from a Distant Cluster
Credit:
D. Wittman (Lucent Technologies' Bell Labs) et al., NOAO, AURA, NSF

This stunning color deep sky view toward the constellation Pisces was made with data from a fast, sensitive, digital detector known as the Big Throughput Camera operating at Cerro Tololo Inter-American Observatory in Chile. Hardly noticeable in the original picture is the small cluster of about 15 galaxies nearly 3 billion light-years distant, circled at the lower right. In fact, this distant cluster was not discovered by noticing its appearance in the image at all, but instead by mapping the subtle distortions created by its gravity. As predicted by Einstein's General Relativity theory, the cluster's gravitational mass acts like a lens, bending light and distorting the shape of background galaxies. The effect is known as gravitational lensing. Computer mapping of weak distortions of background galaxy shapes across the Big Throughput image revealed that the large scale distribution of mass in that part of the sky was concentrated in a small region. That region turned out to correspond to the galaxy cluster -- the first time such an object has been discovered on the basis of its mass properties rather than its light.
2001 August 24

NEAR at Eros: Before Touchdown
Credit:
NEAR Project, JHUAPL, NASA
Image Montage by Patrick Vantuyne

On 12 February, 2001, the NEAR-Shoemaker spacecraft gently touched-down on the the surface of Eros -- the first ever landing on an asteroid. During the descent, the spacecraft's camera recorded successive images of the diminutive world's surface, revealing fractured boulders, dust filled craters, and a mysterious collapsed channel. The last frame, seen in the above montage at the far left, was taken at a range of 128 meters. Expanded in the inset, it shows surface features a few centimeters across. Stereo experimenter Patrick Vantuyne, constructed this montage from the final images in the landing sequence, carefully identifying the overlapping areas in successive frames. Frames which overlap were taken by the spacecraft from slightly different viewpoints, allowing Vantuyne to construct close-up stereo images of the surface of asteroid 433 Eros.
2001 August 25

Pioneer 10: The First 7 Billion Miles
Illustration Credit:
Donald Davis, Courtesy Pioneer Project, ARC, NASA

Q: What was made by humans and is 7.3 billion miles away? A: Pioneer 10 -- and 1997 was the 25th anniversary of its launch. Almost 11 light-hours distant, Pioneer 10 is presently about twice as far from the Sun as Pluto, and bound for interstellar space at 28,000 miles per hour. The distinction of being the first human artifact to venture beyond the known planets of the Solar System is just one in a long list of firsts for this spacefaring ambassador, including; the first spacecraft to travel through the asteroid belt and explore the outer Solar System, the first spacecraft to visit Jupiter, and the first to use a planet's gravity to change its course and to reach solar-system-escape velocity. Pioneer 10's mission is nearing an end. Now exploring the distant reaches of the heliosphere it will soon run out of sufficient electrical power to operate science instruments. However, the 570 lb. spacecraft will continue to coast and in 300,000 years or so it will pass within about 3 light years of nearby star Ross 248. Ross 248 is a faint red dwarf just over 10 light years distant in the constellation Taurus. (Note: In 1998 Voyager 1, launched 5 years later but traveling faster than Pioneer 10, became humanity's most distant spacecraft.)
2001 August 26

Uranus: The Tilted Planet
Credit:
Voyager 2 Team, NASA

Uranus is the third largest planet in our Solar System after Jupiter and Saturn. Uranus is composed mostly of rock and ices, but with a thick hydrogen and helium atmosphere. The blue hue of Uranus' atmosphere arises from the small amount of methane which preferentially absorbs red light. This picture was snapped by the Voyager 2 spacecraft in 1986 - the only spacecraft ever to visit Uranus. Uranus has many moons and a ring system. Uranus, like Venus, has a rotation axis that is greatly tilted and sometimes points near the Sun. It remains an astronomical mystery why Uranus' axis is so tilted. Uranus and Neptune are quite similar: Uranus is slightly larger but less massive.
2001 August 27

Artificial Night Sky Brightness
Credit &
Copyright: P. Cinzano et al., DMSP Satellites, RAS

Where have all the dim stars gone? From many places on the Earth including major cities, the night sky has been reduced from a fascinating display of hundreds of stars to a diffuse glow through which only a handful of stars are visible. The above map indicates the relative amount of light pollution that occurs across the Earth. The cause of the pollution is artificial light reflecting off molecules and aerosols in the atmosphere. Parts of the Eastern United States and Western Europe colored red have an artificial night sky glow over nine times that of the natural sky. In any area marked orange or red, the central band of our Milky Way Galaxy is no longer visible. The International Dark Sky Association suggests common types of fixtures that provide relatively little amounts of light pollution.
2001 August 28

Jagged Hills on Jupiter's Callisto
Credit:
Galileo Project, Arizona State University, JPL, NASA

Why does Jupiter's moon Callisto have unusual jagged hills? This mystery came to light after the robot spacecraft Galileo, in orbit around Jupiter since 1995, swooped past the dark moon in May. The resulting pictures were the highest resolution yet obtained for a Jovian moon: objects as small as 3 meters across are discernable. The strange landscapes pictured above show areas rich in bright sharp mounds about 100 meters tall. A likely formation hypothesis holds that these hills are the result of ejecta thrown billions of years ago during a violent impact. The lower inset region apparently has undergone an epoch of relatively high ice-erosion, where dark rock has filled in some of the inter-hill regions. NASA has recently cleared Galileo to continue swooping Jupiter's moons until 2003, when it will end its journey with a spectacular dive into Jupiter's atmosphere.
2001 August 29

AFGL 2591: A Massive Star Acts Up
Credit:
C. Aspin et al., NIRI, Gemini Obs., NSF

Young star AFGL 2591 is putting on a show. The massive star is expelling outer layers of dust-laced gas as gravity pulls inner material toward the surface. AFGL 2591 is estimated to be about one million years old -- much younger than our own Sun's 5 billion-year age -- and has created a nebula over 500 times the diameter of our Solar System in just the past 10,000 years. The above image in infrared light is one of the first from the new NIRI instrument mounted on one of the largest ground-based optical telescopes in the world: Gemini North. Sharp details are discernable that are blocked by opaque dust in visible-light images. Close inspection of the image reveals at least four expanding rings, indicating an episodic origin to the mysterious activity. AFGL 2591 lies about 3000 light years away toward the constellation of Cygnus.
2001 August 30

How Big Is 2001 KX76?
Credit:
ESA, ESO, Astrovirtel, Gerhard Hahn (German Aerospace Center, DLR), et al.

Newly discovered minor planet 2001 KX76 is circled in the top panel above, a recent composite image from the European Southern Observatory's 2.2 meter telescope at La Silla, Chile. Though 2001 KX76 appears here as single point of light in an unremarkable star field, its orbit has been accurately measured by Astrovirtel, a newly operational "virtual telescope" capable of mining many years of archival data for previously unrecognized images of 2001 KX76. The results show this minor planet to be very distant, now orbiting just beyond Pluto and Charon in the realm of the Kuiper Belt. At its distance, apparent brightness, and assuming a reasonable surface reflectivity, 2001 KX76 would be 1,200 kilometers or more across -- larger than the largest main-belt asteroid, Ceres. In fact, the illustration in the bottom panel graphically compares this size estimate to Pluto, Charon, and the largest previously known Kuiper Belt objects, indicating the newfound minor planet is second only to Pluto in diameter. Along with other evidence, the comparison suggests that Pluto and Charon are closely related to Kuiper Belt worlds like 2001 KX76.
2001 August 31

The Flight Of Helios
Photo Credit:
Carla Thomas, courtesy DFRC, NASA

Solar-powered, remotely piloted, and flying at about 25 miles per hour, NASA's Helios aircraft, is pictured above at 10,000 feet in skies northwest of Kauai, Hawaii on August 13. This ultralight propeller driven aircraft, essentially a flying wing with 14 electric engines, was built by AeroVironment Inc. Covered with solar cells, Helios' impressive 247 foot wide wing exceeds the wing span and even overall length of a Boeing 747 jet airliner. Climbing during daylight hours, the prototype aircraft ultimately reached an altitude just short of 100,000 feet, breaking records for non-rocket powered flight. Helios is intended as a technology demonstrator, but regular, long-duration flights at that altitude could be used for environmental monitoring missions and, communications relays. In the extremely thin air 100,000 feet above Earth's surface, the flight of Helios also simulates conditions for winged flight in the atmosphere of Mars.
2001 September 1

Magnetars In The Sky
Picture Credit:
E. L. Wright (UCLA), COBE Project, Courtesy MSFC, NASA

Indicated on this infrared image of the galactic center region are positions of candidate magnetars -- believed to be the strongest magnets in the galaxy. Classified by observers as Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs), these cosmic powerhouses are likely city-sized, spinning, highly-magnetized neutron stars. How strong is a magnetar's magnetic field? The Earth's magnetic field which deflects compass needles is measured to be about 1 Gauss, while the strongest fields sustainable in earthbound laboratories are about 100,000 Gauss. A magnetar's monster magnetic field is estimated to be as high as 1,000,000,000,000,000 Gauss. A magnet this strong, located at about half the distance to the Moon would easily erase your credit cards and suck pens out of your pocket. In 1998, from a distance of about 20,000 light-years, one magnetar, SGR 1900+14 generated a powerful flash of gamma-rays detected by many spacecraft. That blast of high-energy radiation is now known to have had a measurable effect on Earth's ionosphere. At the surface of the magnetar, its powerful magnetic field is thought to buckle and shift the neutron star crust generating the intense high-energy flares.
2001 September 2

Deimos: A Small Martian Moon
Credit:
Viking Project, JPL, NASA

Mars has two tiny moons, Phobos and Deimos. Pictured above is Deimos, the smaller moon of Mars. In fact, Deimos is one of the smallest known moons in the Solar System measuring only nine miles across. The diminutive Martian moons were discovered in 1877 by Asaph Hall, an American astronomer working at the US Naval Observatory in Washington D.C. The existence of two Martian moons was predicted around 1610 by Johannes Kepler, the astronomer who derived the laws of planetary motion. In this case, Kepler's prediction was not based on scientific principles, but his writings and ideas were so influential that the two Martian moons are discussed in works of fiction such as Jonathan Swift's Gulliver's Travels, written in 1726, over 150 years before their actual discovery.
2001 September 3

The Making of the Rotten Egg Nebula
Credit:
V. Bujarrabal (OAN, Spain), WFPC2, HST, ESA, NASA

Fast expanding gas clouds mark the end for a central star in the Rotten Egg Nebula. The once-normal star has run out of nuclear fuel, causing the central regions to contract into a white dwarf. Some of the liberated energy causes the outer envelope of the star to expand. In this case, the result is a photogenic proto- planetary nebula. As the million-kilometer per hour gas rams into the surrounding interstellar gas, a supersonic shock front forms where ionized hydrogen and nitrogen glow blue. The complex shock front had been hypothesized previously but never so clearly imaged. Thick gas and dust hide the dying central star. The Rotten Egg Nebula, also known as the Calabash Nebula and OH231.8+4.2, will likely develop into a full bipolar planetary nebula over the next 1000 years. The nebula, pictured above, is about 1.4 light-years in extent and located about 5000 light-years away toward the constellation of Puppis.
2001 September 4

2dF Sees Waves of Galaxies
Credit:
Matthew Colless (ANU) et al., 2dF Galaxy Redshift Survey

How are galaxies distributed in the universe? This question is of more than aesthetic interest because the answer likely holds clues to composition of the universe itself. The above map shows the distribution of nearly 200,000 galaxies and is the latest answer obtained by one of the most complex astronomical instruments yet created: the Two-Degree Field (2dF) system. The 2dF system measures galaxy redshifts, allowing astronomers to estimate distances to some of the millions of galaxies visible, and hence to make a three-dimensional map of the local universe. Although the distribution of galaxies appears nearly uniform on the largest scale, waves of galaxies are discernable extending up to 100 million light-years. Detailed analyses of the incoming data indicate that to create such a network of waves, normal baryonic matter must make up only 15 percent of all matter, while all matter must make up only about 30 percent of that needed to make the universe geometrically flat. Is the remaining 70 percent dark energy?
2001 September 5

3C175: Quasar Cannon
Credit & Copyright:
Alan Bridle (NRAO Charlottesville) VLA, NRAO, NSF

3C175 is not only a quasar, it is a galaxy-fueled particle cannon. Visible as the central dot is quasar 3C175, the active center of a galaxy so distant that the light we see from it was emitted when the Earth was just forming. The above image was recorded in radio waves by an array of house-sized telescopes called the Very Large Array (VLA). Shooting out from 3C175 is a thin jet of protons and electrons traveling near the speed of light that is over one million light-years long. The jet acts like a particle cannon and bores through gas cloud in its path. How this jet forms and why it is so narrow remain topics of current research.
2001 September 6

Moon AND Stars
Composite Image Credit:
T.A. Rector, I.P. Dell'Antonio, NOAO, AURA, NSF

Here's something you don't see too often ... a detailed picture of the full Moon surrounded by a rich field of background stars. It's true that bright moonlight scattered by the atmosphere tends to mask faint stars, but pictures of the sunlit portion of the Moon made with earthbound telescopes or even with cameras on the lunar surface often fail to show any background stars at all. Why? Because the exposure times are too short. Very short exposures, lasting fractions of a second, are required to accurately record an image of the bright lunar surface. But the background stars (and galaxies!) such as those visible above are much fainter and need exposures lasting minutes to hours which would seriously overexpose the surface of the Moon. So, of course this stunning view really is a combination of two digital images -- a short exposure, registering the exquisite lunar surface details at full Moon, superposed on a separate very long exposure, made with the Moon absent from the star field. The final representation of Moon and background stars is very dramatic, even though it could not have been captured in a single exposure.