allcoding1_official
106K subscribers
765 photos
2 videos
70 files
755 links
Download Telegram
High - dimensional data
High training error and high test error
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
#include <bits/stdc++.h>
using namespace std;

class Solution {
public:
string clearStars(string A) {
string s = A;

priority_queue<char, vector<char>, greater<char>> pq;
vector<vector<int>> ind(26);
unordered_set<int> rs;

for (int i = 0; i < s.size(); ++i) {
if (s[i] == '*') {
rs.insert(i);
char ch = pq.top(); pq.pop();
pq.push(ch);

rs.insert(ind[ch - 'a'].back());
ind[ch - 'a'].pop_back();

if (ind[ch - 'a'].empty()) pq.pop();

continue;
}

if (ind[s[i] - 'a'].empty())
pq.push(s[i]);

ind[s[i] - 'a'].push_back(i);
}

string res = "";
for (int i = 0; i < s.size(); ++i) {
if (!rs.count(i)) {
res += s[i];
}
}

return res;
}
};


Clear stars
Start removal
C++
Python
Start removal
Company : BrowserStack
Role: Software Engineer(Backend)
Experience: 0- 1Years
Location: Mumbai /Remote

Apply now: https://browserstack.wd3.myworkdayjobs.com/en-US/External/job/Software-Engineer--Backend--Mumbai_JR102378


Telegram:- @allcoding1_official
1/2
ā¤1
4xy
30/84
150
Prior x Likelihood
Mode>median>mean
S2: 4xy
S7: 6
S12: 0
Q4: 1/2
S22: (2, 3)
S28: Target/Mean Encoding
S29: TimeSeriesSplit
S38: 15
S43: 2/5
S59: Mode > Median > Mean

ML - 2: The data has a Gaussian distribution
ML - 7: Updating prior beliefs with observed data using Bayes' theorem
ML - 12: The probability distribution over actions given states
ML - 17: Internal covariate shift
ML - 23: Boosting reduces bias, bagging reduces variance
ML - 24: Binary Cross-Entropy
S48: 30/84
S60: 150
S53: 2/3
S68: Prior Ɨ Likelihood


Amazon Machine Learning Summer School:

Exam Date: 3rd August 2025
Exam Duration: 60 mins

10:30 AM

Test format:
Section 1 - MCQ section - 20 questions
Section 2 - DSA type coding section - 2 questions

Answers available šŸ‘‡šŸ‘‡šŸ‘‡
Telegram channel:- @allcoding1_official
ā¤1
M1: Encode sequential order

T1: Regularization

M16: Likelihood Ɨ Prior

ML2: SGD can escape local minima due to its noisy updates

ML3: Recursive Feature Elimination (RFE)

ML4: Gini Index

M4: It overfits the training data

M7: 0

M2: Strong negative linear relationship

S13: No real solution
S17: Local minimum
S23: Converges by Limit Comparison with 1/n²
S30: Collect recent user data and evaluate model drift
S31: Data leakage inflated model performance
S39: 6/216

Amazon ML School MCQ Answers 1:15 PM
Kill the enemy
C++
Amazon 1.15 PM


#include <vector>
#include <algorithm>

int solve(std::vector<int> &A, int B) {
long long m1 = 0, m2 = 0;

for (int val : A) {
if (val > m1) {
m2 = m1;
m1 = val;
} else if (val > m2) {
m2 = val;
}
}

long long b = B;
long long s = m1 + m2;

if (s == 0) {
return b > 0 ? -1 : 0;
}

long long k = b / s;
int ans = k * 2;
long long rem = b % s;

if (rem == 0) {
return ans;
} else if (rem <= m1) {
return ans + 1;
} else {
return ans + 2;
}
}
ā¤3