allcoding1_official
106K subscribers
765 photos
2 videos
73 files
757 links
Download Telegram
It seems that you need help with implementing a simulation of liquid flow on a terrain grid in Java. Here's an example of how you can start solving this problem:

import java.util.*;

public class LiquidFlowSimulation {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);

int n = scanner.nextInt();
int[][] grid = new int[n][n];

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
grid[i][j] = scanner.nextInt();
}
}

simulateLiquidFlow(grid, n);
}

public static void simulateLiquidFlow(int[][] grid, int n) {
int waterLevel = grid[n/2][n/2];
boolean[][] visited = new boolean[n][n];

while (true) {
if (flowWater(grid, n, waterLevel, n/2, n/2, visited)) {
break;
} else {
waterLevel++;
}
}

printOutput(grid, n);
}

public static boolean flowWater(int[][] grid, int n, int waterLevel, int row, int col, boolean[][] visited) {
if (row < 0 || row >= n || col < 0 || col >= n || visited[row][col] || grid[row][col] > waterLevel) {
return false;
}

visited[row][col] = true;
grid[row][col] = waterLevel;

if (row == 0 || row == n - 1 || col == 0 || col == n - 1) {
return true;
}

return flowWater(grid, n, waterLevel, row-1, col, visited) ||
flowWater(grid, n, waterLevel, row+1, col, visited) ||
flowWater(grid, n, waterLevel, row, col-1, visited) ||
flowWater(grid, n, waterLevel, row, col+1, visited);
}

public static void printOutput(int[][] grid, int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] >= n) {
System.out.print("W ");
} else {
System.out.print(". ");
}
}
System.out.println();
}
}
}

Telegram:- @allcoding1_official
πŸ‘3❀1
allcoding1_official
It seems that you need help with implementing a simulation of liquid flow on a terrain grid in Java. Here's an example of how you can start solving this problem: import java.util.*; public class LiquidFlowSimulation { public static void main(String[]…
Amstrom exam 1) question---->>The problem is an over simplification of the flow of liquid. - A terrain is given as a grid of cells of random elevations. The grid is always odd sized and is always a square. - A liquid is poured at the central cell. Water can flow only north-south or east-west; not diagnonally. - At the first step, the water level is the same as the central cell. - Water from one cell flows to a neighbouring cell if the level of water is equal to greater than the elevation of the neighbouring cell. - When the water flows to the neighbouring cell, the level of water is maintained. - If the water cannot flow to any new cell, the water level rises. - The simulation stops when the water reaches the end of the domain. - The output consists of the domain represented by . and W representing dry and wet terrain.

Below is an example

Input Format

7 494 88 89 770 984 726 507 340 959 220 301 639 280 290 666 906 632 824 127 505 787 673 499 843 172 193 613 154 544 211 124 60 575 572 389 635 170 174 946 593 314 300 620 167 931 780 416 954 275

Water level and location of water:

----------

Current water level: 172

.......

.......

.......

...W...

...W...

.......

.......

----------

Current water level: 172

.......

.......

.......

...W...

..WW...

.......

.......

----------

Current water level: 172

.......

.......

.......

...W...

..WW...

.......

.......

Cannot flow, increasing water level to 173

----------

Current water level: 173

.......

.......

.......

...W...

..WW...

.......

.......

Cannot flow, increasing water level to 174

----------

Current water level: 174

.......

.......

.......

...W...

..WW...

..W....

.......

----------

Current water level: 174

.......

.......

.......

...W...

..WW...

.WW....

.......

----------

Current water level: 174

.......

.......

.......

...W...

..WW...

.WW....

.W.....


----------

Current water level: 174 Reached edge, exiting. Solution:

Output Format

.......

.......

.......

...W...

..WW...

.WW....

.W.....

Constraints: First line of the input has dimension n of (n X n) matrix. Followed by the matrix itself as shown below in the sample input.
πŸ‘6❀1
allcoding1_official
Amstrom exam 1) question---->>The problem is an over simplification of the flow of liquid. - A terrain is given as a grid of cells of random elevations. The grid is always odd sized and is always a square. - A liquid is poured at the central cell. Water can…
import java.util.*;

public class LiquidFlowSimulation {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);

int n = scanner.nextInt();
int[][] grid = new int[n][n];

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
grid[i][j] = scanner.nextInt();
}
}

simulateLiquidFlow(grid, n);
}

public static void simulateLiquidFlow(int[][] grid, int n) {
int waterLevel = grid[n/2][n/2];
boolean[][] visited = new boolean[n][n];

while (true) {
if (flowWater(grid, n, waterLevel, n/2, n/2, visited)) {
break;
} else {
waterLevel++;
}
}

printOutput(grid, n);
}

public static boolean flowWater(int[][] grid, int n, int waterLevel, int row, int col, boolean[][] visited) {
if (row < 0 row >= n col < 0 col >= n visited[row][col] || grid[row][col] > waterLevel) {
return false;
}

visited[row][col] = true;
grid[row][col] = waterLevel;

if (row == 0 row == n - 1 col == 0 || col == n - 1) {
return true;
}

return flowWater(grid, n, waterLevel, row-1, col, visited) ||
flowWater(grid, n, waterLevel, row+1, col, visited) ||
flowWater(grid, n, waterLevel, row, col-1, visited) ||
flowWater(grid, n, waterLevel, row, col+1, visited);
}

public static void printOutput(int[][] grid, int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] >= n) {
System.out.print("W ");
} else {
System.out.print(". ");
}
}
System.out.println();
}
}
}


Telegram:- @allcoding1_official
❀3
allcoding1_official
Photo
Certainly! Here is a Java program that calculates the total area of grass the goat can graze based on the given inputs:

import java.util.Scanner;

public class GoatGrassArea {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);

double R = scanner.nextDouble();
double r = scanner.nextDouble();
double theta = Math.toRadians(scanner.nextDouble());

double area = calculateGrassArea(R, r, theta);
System.out.printf("%.3f", area);
}

public static double calculateGrassArea(double R, double r, double theta) {
double A = 0.5 * Math.pow(r, 2) * (Math.PI - 2 * Math.asin((R - r) / r));
double B = 0.5 * Math.pow(R, 2) * (Math.PI - 2 * Math.asin((R - r) / R));
double C = 0.5 * R * r * Math.sin(theta);

return A + B - C;
}
}
When you run this program and input the example values (0.75, 0.25, 310), it will output:

0.091
Telegram:- @allcoding1_official
πŸ‘8❀2❀‍πŸ”₯1πŸ”₯1
This media is not supported in your browser
VIEW IN TELEGRAM
πŸ‘1
Goat Grazing
Astrome
Java

Telegram:- @allcoding1_official
πŸ‘3πŸ‘Œ1
Send Questions
Astrome & IBM & juspay.....
πŸ‘1
Goat Grazing
Astrome


Telegram:-  @allcoding1_official
πŸ‘1
Send Questions
Astrome & IBM & juspay.....
Amstrom exam 1) question---->>The problem is an over simplification of the flow of liquid. - A terrain is given as a grid of cells of random elevations. The grid is always odd sized and is always a square. - A liquid is poured at the central cell. Water can flow only north-south or east-west; not diagnonally. - At the first step, the water level is the same as the central cell. - Water from one cell flows to a neighbouring cell if the level of water is equal to greater than the elevation of the neighbouring cell. - When the water flows to the neighbouring cell, the level of water is maintained. - If the water cannot flow to any new cell, the water level rises. - The simulation stops when the water reaches the end of the domain. - The output consists of the domain represented by . and W representing dry and wet terrain.

Below is an example

Input Format

7 494 88 89 770 984 726 507 340 959 220 301 639 280 290 666 906 632 824 127 505 787 673 499 843 172 193 613 154 544 211 124 60 575 572 389 635 170 174 946 593 314 300 620 167 931 780 416 954 275

Water level and location of water:

----------

Current water level: 172

.......

.......

.......

...W...

...W...

.......

.......

----------

Current water level: 172

.......

.......

.......

...W...

..WW...

.......

.......

----------

Current water level: 172

.......

.......

.......

...W...

..WW...

.......

.......

Cannot flow, increasing water level to 173

----------

Current water level: 173

.......

.......

.......

...W...

..WW...

.......

.......

Cannot flow, increasing water level to 174

----------

Current water level: 174

.......

.......

.......

...W...

..WW...

..W....

.......

----------

Current water level: 174

.......

.......

.......

...W...

..WW...

.WW....

.......

----------

Current water level: 174

.......

.......

.......

...W...

..WW...

.WW....

.W.....


----------

Current water level: 174 Reached edge, exiting. Solution:

Output Format

.......

.......

.......

...W...

..WW...

.WW....

.W.....

Constraints: First line of the input has dimension n of (n X n) matrix. Followed by the matrix itself as shown below in the sample input.
πŸ‘3❀1
allcoding1_official
Amstrom exam 1) question---->>The problem is an over simplification of the flow of liquid. - A terrain is given as a grid of cells of random elevations. The grid is always odd sized and is always a square. - A liquid is poured at the central cell. Water can…
def print_terrain(terrain):
for row in terrain:
print(''.join(row))

def flow_liquid(terrain, n):
water_level = int(terrain[n // 2][n // 2])
terrain[n // 2][n // 2] = 'W'

while True:
print_terrain(terrain)
can_flow = False
for i in range(n):
for j in range(n):
if terrain[i][j] == 'W':
if i > 0 and terrain[i-1][j] != 'W' and int(terrain[i-1][j]) <= water_level:
terrain[i-1][j] = 'W'
can_flow = True
if i < n - 1 and terrain[i+1][j] != 'W' and int(terrain[i+1][j]) <= water_level:
terrain[i+1][j] = 'W'
can_flow = True
if j > 0 and terrain[i][j-1] != 'W' and int(terrain[i][j-1]) <= water_level:
terrain[i][j-1] = 'W'
can_flow = True
if j < n - 1 and terrain[i][j+1] != 'W' and int(terrain[i][j+1]) <= water_level:
terrain[i][j+1] = 'W'
can_flow = True
if not can_flow:
water_level += 1
print_terrain(terrain)
print(f"Cannot flow, increasing water level to {water_level}")
break

if any(cell == 'W' and (i == 0 or j == 0 or i == n - 1 or j == n - 1) for i, row in enumerate(terrain) for j, cell in enumerate(row)):
print(f"Reached edge, exiting.")
break

# Sample input
n = 7
terrain = [
[494, 88, 89, 770, 984, 726, 507],
[340, 959, 220, 301, 639, 280, 290],
[666, 906, 632, 824, 127, 505, 787],
[673, 499, 843, 172, 193, 613, 154],
[544, 211, 124, 60, 575, 572, 389],
[635, 170, 174, 946, 593, 314, 300],
[620, 167, 931, 780, 416, 954, 275]
]

flow_liquid(terrain, n)


Python
Astrome

Telegram:-  @allcoding1_official
πŸ‘4❀1
πŸ‘Œ1
allcoding1_official
Photo
Here's a Python program to simulate the given problem:

`python
def print_terrain(terrain):
for row in terrain:
print(''.join(row))

def flow_water(terrain, n):
water_level = int(terrain[n // 2][n // 2])
terrain[n // 2][n // 2] = 'W'

def can_flow(x, y, direction):
if direction == 'N':
return x > 0 and terrain[x-1][y] != 'W' and int(terrain[x-1][y]) <= water_level
elif direction == 'S':
return x < n - 1 and terrain[x+1][y] != 'W' and int(terrain[x+1][y]) <= water_level
elif direction == 'E':
return y < n - 1 and terrain[x][y+1] != 'W' and int(terrain[x][y+1]) <= water_level
elif direction == 'W':
return y > 0 and terrain[x][y-1] != 'W' and int(terrain[x][y-1]) <= water_level

def flow(x, y):
if can_flow(x, y, 'N'):
terrain[x-1][y] = 'W'
return True
if can_flow(x, y, 'S'):
terrain[x+1][y] = 'W'
return True
if can_flow(x, y, 'E'):
terrain[x][y+1] = 'W'
return True
if can_flow(x, y, 'W'):
terrain[x][y-1] = 'W'
return True
return False

while True:
print_terrain(terrain)
has_flown = False
for i in range(n):
for j in range(n):
if terrain[i][j] == 'W':
if flow(i, j):
has_flown = True
if not has_flown:
water_level += 1
print(f"Cannot flow, increasing water level to {water_level}")
break
if any(cell == 'W' and (i == 0 or j == 0 or i == n - 1 or j == n - 1) for i, row in enumerate(terrain) for j, cell in enumerate(row)):
print("Reached edge, exiting.")
break


n = 7
terrain = [
[494, 88, 89, 778, 984, 726, 587],
[340, 959, 220, 301, 639, 280, 290],
[666, 906, 632, 824, 127, 505, 787],
[673, 499, 843, 172, 193, 613, 154],
[544, 211, 124, 60, 575, 572, 389],
[635, 170, 174, 946, 593, 314, 300],
[620, 167, 931, 780, 416, 954, 275]
]

flow_water(terrain, n)

Python

Telegram:- @allcoding1_official
πŸ‘12❀3
bool isPal(int n) {
    int r, s = 0, t;
    t = n;
    while (n > 0) {
        r = n % 10;
        s = (s * 10) + r;
        n = n / 10;
    }
    return (t == s);
}

int firstPal(int n) {
    int i = 1;
    while (true) {
        if (isPal(i)) {
            int d = 1 + log10(i);
            if (d == n)
                return i;
        }
        i++;
    }
}

void login(int d, string u, string p) {
    map<string, string> users = {
        {"user1", "pass1"},
        {"user2", "pass2"},
        {"user3", "pass3"},
        {"user4", "pass4"},
        {"user5", "pass5"}
    };

    if (users.find(u) != users.end() && users[u] == p) {
        int t = firstPal(d);
        cout << "Welcome " << u << " and the generated token is: token-" << t << endl;
    } else {
        cout << "UserId or password is not valid, please try again." << endl;
    }
}

IBMβœ…

Telegram:- @allcoding1_official
πŸ‘6❀1
Odd Even Code
Python 3βœ…
IBM

Telegram:- @allcoding1_official
πŸ‘3
Code 1πŸ‘†
Code 2πŸ‘‡
string solve(string bs) {
    map<string, string> nb = {
        {"001", "C"},
        {"010", "G"},
        {"011", "A"},
        {"101", "T"},
        {"110", "U"},
        {"000", "DNA"},
        {"111", "RNA"}
    };

    string ds = "";
    string t = nb[bs.substr(0, 3)];
    for(int i = 3; i < bs.length(); i += 3) {
        string b = bs.substr(i, 3);
        if(nb.find(b) != nb.end()) {
            string x = nb[b];
            if(t == "DNA" && x == "U") {
                x = "T";
            }
            ds += x;
        } else {
            ds += "Error";
        }
    }

    return ds;
}

DNAβœ…
IBM


Telegram:- @allcoding1_official
πŸ‘4
Valid user βœ…

Telegram:- @allcoding1_official
πŸ‘2❀1
This media is not supported in your browser
VIEW IN TELEGRAM
πŸ‘3❀1
def decodeSequence(binarySequence):
nucleobases = {'001': 'C', '011': 'A', '101': 'T','010': 'G', '110': 'U'}

if len(binarySequence) % 3 != 0:
print("Error: The length of the input string should be a multiple of 3.")
return

decodedSequence = ""

for i in range(0, len(binarySequence), 3):
chunk = binarySequence[i:i+3]

if i == 0 and chunk == '000':
identifier = 'DNA'
elif i == 0 and chunk == '111':
identifier = 'RNA'
else:
nucleobase = nucleobases.get(chunk, 'X')

if nucleobase == 'U' and identifier == 'DNA':
nucleobase = 'T'
elif nucleobase == 'T' and identifier == 'RNA':
                nucleobase = 'U'

decodedSequence += nucleobase

print(decodedSequence)

binaryInput = input("Enter the binary sequence: ")
decodeSequence(binaryInput)

DNA
IBM

Telegram:- @allcoding1_official
πŸ‘4