import PySimpleGUI as sg
sg.theme('DarKAmber')
layout = [[sg.CalendarButton('Click here to see the date', target='-IN4-', format='%m-%d', default_date_m_d_y=(1,None,2020), )],
[sg.Button('Date Popup'), sg.Exit()]]
window = sg.Window('AK calendar',layout,no_titlebar=False)
while True:
event, values = window.read()
print(event, values)
if event in (sg.WIN_CLOSED, 'Exit'):
break
elif event == 'Date Popup':
sg.popup('You chose:', sg.popup_get_date())
window.close()
sg.theme('DarKAmber')
layout = [[sg.CalendarButton('Click here to see the date', target='-IN4-', format='%m-%d', default_date_m_d_y=(1,None,2020), )],
[sg.Button('Date Popup'), sg.Exit()]]
window = sg.Window('AK calendar',layout,no_titlebar=False)
while True:
event, values = window.read()
print(event, values)
if event in (sg.WIN_CLOSED, 'Exit'):
break
elif event == 'Date Popup':
sg.popup('You chose:', sg.popup_get_date())
window.close()
‼️New video is about [ Dictionary attack explained in python ] Today Night @8:00 pm Subscribe for instant notification👍
import wordlist
generator=wordlist.Generator('1234567890')
for each in generator.generate('1,10') #10 different permutations
print(each)
generator=wordlist.Generator('1234567890')
for each in generator.generate('1,10') #10 different permutations
print(each)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
dataset=pd.read_csv('A:\data\studentscores.csv')
dataset.shape
(25,2)
dataset.head()
dataset.describe()
dataset.plot(x='Hours',y='Scores',style="*")
plt.title('Student mark prediction')
plt.xlabel('Hours')
plt.ylabel('Percentage marks')
plt.show()
X=dataset.iloc[:, :-1].values
Y=dataset.iloc[:,1].values
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=0)
from sklearn.linear_model import LinearRegression
regressor=LinearRegression()
regressor.fit(X_train,Y_train)
print(regressor.intercept_)
print(regressor.coef_)
y_pred=regressor.predict(X_test)
df=pd.DataFrame({'Actual':Y_test,'Predicted':y_pred})
df
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
dataset=pd.read_csv('A:\data\studentscores.csv')
dataset.shape
(25,2)
dataset.head()
dataset.describe()
dataset.plot(x='Hours',y='Scores',style="*")
plt.title('Student mark prediction')
plt.xlabel('Hours')
plt.ylabel('Percentage marks')
plt.show()
X=dataset.iloc[:, :-1].values
Y=dataset.iloc[:,1].values
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=0)
from sklearn.linear_model import LinearRegression
regressor=LinearRegression()
regressor.fit(X_train,Y_train)
print(regressor.intercept_)
print(regressor.coef_)
y_pred=regressor.predict(X_test)
df=pd.DataFrame({'Actual':Y_test,'Predicted':y_pred})
df
❤1
‼️code for previous video { Student mark prediction project } [ Like share comment and subscribe❤️
import pickle
var = input("Please enter the news text you want to verify: ")
print("You entered: " + str(var))
# function to run for prediction
def fakenews(var):
# retrieving the best model for prediction call
load_model = pickle.load(open('A:\data\model.sav', 'rb'))
prediction = load_model.predict([var])
prob = load_model.predict_proba([var])
return (print("The given statement is ",prediction[0]),
print("The truth probability score is ",prob[0][1]))
if name == 'main':
fakenews(var)
var = input("Please enter the news text you want to verify: ")
print("You entered: " + str(var))
# function to run for prediction
def fakenews(var):
# retrieving the best model for prediction call
load_model = pickle.load(open('A:\data\model.sav', 'rb'))
prediction = load_model.predict([var])
prob = load_model.predict_proba([var])
return (print("The given statement is ",prediction[0]),
print("The truth probability score is ",prob[0][1]))
if name == 'main':
fakenews(var)
🤔3
Here is the code for Fake news predictor Using python [ Keep share & support for more updates❤️]
⚠️Kindly follow our Instagram account [ akpythonyt ] for interactions and more programming updates😊
https://www.youtube.com/watch?v=rLxjzFSmi0Y [ New video is out now ]
YouTube
| How the Pybrain works in machine learning | | AK |
In this video we are going to learn about Pybrain and it workflow
Pybrain is machine learning library that is used for completing the machine learning tasks
Watch this video fully to understand the real concepts behind the Pybrain
Like share comment and…
Pybrain is machine learning library that is used for completing the machine learning tasks
Watch this video fully to understand the real concepts behind the Pybrain
Like share comment and…
This media is not supported in your browser
VIEW IN TELEGRAM
New video : How to create this 👆
from colorthief import ColorThief
colorthief=ColorThief("Path of your image")
dominatcolor=colorthief.get_color(quality=1)
print(dominatcolor)
palette=colorthief.get_palette(color_count=6)
print(palette)
colorthief=ColorThief("Path of your image")
dominatcolor=colorthief.get_color(quality=1)
print(dominatcolor)
palette=colorthief.get_palette(color_count=6)
print(palette)
import PySimpleGUI as sg
import psutil
sg.theme('DarkAmber')
layout = [[sg.Text('CPU Meter')],
[sg.Text(size=(15,4 ), font=('Helvetica', 20),
justification='center', key='-text-')],
[sg.Exit(button_color=('white', 'firebrick4'),size=(9, 1))]]
window = sg.Window('AK CPU widget',
layout,
no_titlebar=False,
grab_anywhere=True, finalize=True)
interval = 10
while True:
event, values = window.read(timeout=interval)
if event in (sg.WIN_CLOSED, 'Exit'):
break
cpu_percent = psutil.cpu_percent(interval=1)
window['-text-'].update(f'CPU {cpu_percent:02.0f}%')
window.close()
import psutil
sg.theme('DarkAmber')
layout = [[sg.Text('CPU Meter')],
[sg.Text(size=(15,4 ), font=('Helvetica', 20),
justification='center', key='-text-')],
[sg.Exit(button_color=('white', 'firebrick4'),size=(9, 1))]]
window = sg.Window('AK CPU widget',
layout,
no_titlebar=False,
grab_anywhere=True, finalize=True)
interval = 10
while True:
event, values = window.read(timeout=interval)
if event in (sg.WIN_CLOSED, 'Exit'):
break
cpu_percent = psutil.cpu_percent(interval=1)
window['-text-'].update(f'CPU {cpu_percent:02.0f}%')
window.close()
This media is not supported in your browser
VIEW IN TELEGRAM
Today 8:00 PM [ Subscribe & share ]😊