#Bayesian Optimization framework can intelligently trade off experiments w/ varying cost & fidelity. We achieve strong regret bounds as well as state-of-the-art performance on multiple real-world #datasets! Preprint: https://arxiv.org/abs/1811.00755v1
#machinelearning
✴️ @AI_Python_EN
🗣 @AI_Python_arXiv
❇️ @AI_Python
#machinelearning
✴️ @AI_Python_EN
🗣 @AI_Python_arXiv
❇️ @AI_Python
The 10 Biggest datasets of 2018
0) Open Images V4 from Google AI on April 30th Contains 15.4M bounding-boxes for 600 categories on 1.9M images.
Paper: https://lnkd.in/fm4xiUm
1) MURA from Stanford University ML Group on May 24 Radiographic image dataset
Paper: https://lnkd.in/fBy5szB
2) BDD100K from BAIR, Georgia Tech, Peking University, Uber AI
on May 30 Self-Driving Car Dataset.
Paper: https://lnkd.in/f-sYj9k
3) SQuAD 2.0 from Stanford
on June 11 QA Dataset.
Paper: https://lnkd.in/fYc6c5W
4) CoQA from Stanford on August 21 QA Dataset
Paper: https://lnkd.in/fKvuTvE
5) Spider 1.0 from Yale Univ on September 24 Cross-domain semantic parsing and text-to-SQL dataset.
Paper: https://lnkd.in/fWyR2x8
6) HototQA from Carnegie, Stanford, and Montreal on September 25 QA Dataset on Wiki
Paper: https://lnkd.in/fTtTgZt
7) Tencent ML Images from Tencent AI Lab on Oct 18 largest open-source multi-label image dataset
Paper: https://lnkd.in/ffV6VD5
8) Tencent AI Lab Embedding Corpus for Chinese words and phrases on Oct 19 Embeddings Dataset
Paper: https://lnkd.in/ffV6VD5
9) fastMRI from NYU and Facebook AI on November 26
Knee MRI Images Dataset
Paper: https://lnkd.in/fQuUDNk
Read: https://lnkd.in/fXU9Kr6
#dataset #datasets
✴️ @AI_Python_EN
🗣 @AI_Python_Arxiv
0) Open Images V4 from Google AI on April 30th Contains 15.4M bounding-boxes for 600 categories on 1.9M images.
Paper: https://lnkd.in/fm4xiUm
1) MURA from Stanford University ML Group on May 24 Radiographic image dataset
Paper: https://lnkd.in/fBy5szB
2) BDD100K from BAIR, Georgia Tech, Peking University, Uber AI
on May 30 Self-Driving Car Dataset.
Paper: https://lnkd.in/f-sYj9k
3) SQuAD 2.0 from Stanford
on June 11 QA Dataset.
Paper: https://lnkd.in/fYc6c5W
4) CoQA from Stanford on August 21 QA Dataset
Paper: https://lnkd.in/fKvuTvE
5) Spider 1.0 from Yale Univ on September 24 Cross-domain semantic parsing and text-to-SQL dataset.
Paper: https://lnkd.in/fWyR2x8
6) HototQA from Carnegie, Stanford, and Montreal on September 25 QA Dataset on Wiki
Paper: https://lnkd.in/fTtTgZt
7) Tencent ML Images from Tencent AI Lab on Oct 18 largest open-source multi-label image dataset
Paper: https://lnkd.in/ffV6VD5
8) Tencent AI Lab Embedding Corpus for Chinese words and phrases on Oct 19 Embeddings Dataset
Paper: https://lnkd.in/ffV6VD5
9) fastMRI from NYU and Facebook AI on November 26
Knee MRI Images Dataset
Paper: https://lnkd.in/fQuUDNk
Read: https://lnkd.in/fXU9Kr6
#dataset #datasets
✴️ @AI_Python_EN
🗣 @AI_Python_Arxiv
Shuffling large datasets, have you ever tried that?
Here the author presents an algorithm for shuffling large datasets.
Here you learn the following;
0. why Shuffle in the first place?
1. A 2-pass shuffle algorithm is tested
2. How to deal with oversized piles
3. Parallelization & more
Link to article : https://lnkd.in/dZ8-tyJ
Gist on #Github: for a cool visualization of the shuffle https://lnkd.in/d8iK8fd
#algorithms #github #datasets #deeplearning #machinelearning
❇️ @AI_Python
🗣 @AI_Python_Arxiv
✴️ @AI_Python_EN
Here the author presents an algorithm for shuffling large datasets.
Here you learn the following;
0. why Shuffle in the first place?
1. A 2-pass shuffle algorithm is tested
2. How to deal with oversized piles
3. Parallelization & more
Link to article : https://lnkd.in/dZ8-tyJ
Gist on #Github: for a cool visualization of the shuffle https://lnkd.in/d8iK8fd
#algorithms #github #datasets #deeplearning #machinelearning
❇️ @AI_Python
🗣 @AI_Python_Arxiv
✴️ @AI_Python_EN