🐼🤹♂️ pandas trick:
Two easy ways to reduce DataFrame memory usage:
1. Only read in columns you need
2. Use 'category' data type with categorical data
Example:
df = pd.read_csv('file.csv', usecols=['A', 'C', 'D'], dtype={'D':'category'})
#Python #DataScience
✴️ @AI_Python_EN
Two easy ways to reduce DataFrame memory usage:
1. Only read in columns you need
2. Use 'category' data type with categorical data
Example:
df = pd.read_csv('file.csv', usecols=['A', 'C', 'D'], dtype={'D':'category'})
#Python #DataScience
✴️ @AI_Python_EN
Quick links for all things #R and #Python:
1. Overview of using python with RStudio: https://lnkd.in/d5NkJAt
2. Python & #shiny: https://lnkd.in/dVfkE6b
3. Python & #rmarkdown: https://lnkd.in/dXpSd7i
4. Python with #plumber: https://lnkd.in/dn2pEAQ
For a central location to publish all of your team's data products (R artifacts, R & python mixed assets, and #jupyternotebooks), check out RStudio Connect: https://lnkd.in/dXW7iPG
✴️ @AI_Python_EN
1. Overview of using python with RStudio: https://lnkd.in/d5NkJAt
2. Python & #shiny: https://lnkd.in/dVfkE6b
3. Python & #rmarkdown: https://lnkd.in/dXpSd7i
4. Python with #plumber: https://lnkd.in/dn2pEAQ
For a central location to publish all of your team's data products (R artifacts, R & python mixed assets, and #jupyternotebooks), check out RStudio Connect: https://lnkd.in/dXW7iPG
✴️ @AI_Python_EN
#Python, Performance, and GPUs
https://towardsdatascience.com/python-performance-and-gpus-1be860ffd58d
✴️ @AI_Python_EN
https://towardsdatascience.com/python-performance-and-gpus-1be860ffd58d
✴️ @AI_Python_EN
Getting System Information in Linux using Python Script.
#BigData #Analytics #DataScience #IoT #PyTorch #Python #RStats #TensorFlow #DataScientist #Linux
http://bit.ly/2X56cZa
✴️ @AI_Python_EN
#BigData #Analytics #DataScience #IoT #PyTorch #Python #RStats #TensorFlow #DataScientist #Linux
http://bit.ly/2X56cZa
✴️ @AI_Python_EN
#AI/ #DataScience/ #MachineLearning/ #ML:
7 Steps for Data Preparation Using #Python
Link => https://bit.ly/PyDataPrep
#datamining #statistics #bigdata #artificialintelligence
✴️ @AI_Python_EN
7 Steps for Data Preparation Using #Python
Link => https://bit.ly/PyDataPrep
#datamining #statistics #bigdata #artificialintelligence
✴️ @AI_Python_EN
Module 3: Core Machine Learning (May-October Semester)
July 6th by FAST-NU AI/ML Training Center
Module 3 (Core Machine Learning) of our ongoing cohort (May October semester) for the AI-ML training program. It covers basic to intermediate Machine Learning and lays a solid foundation to build or transition into a career of ML and Data Science, and also to provide a thorough grounding for the next Deep Learning Module.
https://www.facebook.com/events/2195319697439547/
#deeplearning #machinelearning #opencv #AI #ML #Python
✴️ @AI_Python_EN
July 6th by FAST-NU AI/ML Training Center
Module 3 (Core Machine Learning) of our ongoing cohort (May October semester) for the AI-ML training program. It covers basic to intermediate Machine Learning and lays a solid foundation to build or transition into a career of ML and Data Science, and also to provide a thorough grounding for the next Deep Learning Module.
https://www.facebook.com/events/2195319697439547/
#deeplearning #machinelearning #opencv #AI #ML #Python
✴️ @AI_Python_EN
This media is not supported in your browser
VIEW IN TELEGRAM
10 new posts on datahacker.rs.
Introduction to #ComputerVision using #OpenCV (#Python and #C++)
https://lnkd.in/gZtj_g6
✴️ @AI_Python_EN
Introduction to #ComputerVision using #OpenCV (#Python and #C++)
https://lnkd.in/gZtj_g6
✴️ @AI_Python_EN