Там сейчас идёт NeurIPS 2023 в новом Орлеане — топовое событие в мире AI. Год назад я писал о своей поездке на NeurIPS 2022, где я презентовал статью. Забавно, что в этом году конфа опять в Новом Орлеане (видать, очень удачный город для проведения таких тусовок), но у меня не получилось поехать из-за визы.
Кстати, это фото сделано на NIPS 2002 (не мной), когда конфа была маленькой и ламповой, а не как сейчас на более чем 10к человек.
Узнаете кого-нибудь на фото?
@ai_newz
Кстати, это фото сделано на NIPS 2002 (не мной), когда конфа была маленькой и ламповой, а не как сейчас на более чем 10к человек.
Узнаете кого-нибудь на фото?
@ai_newz
Сейчас часто слышу мнение, что конкуренция в AI очень высокая, и опубликоваться на лучших конференциях почти нереально. В качестве мотивации для начинающих ресерчеров скажу, что сейчас не труднее чем 5 лет назад, просто нужно уметь креативно подходить к ресерчу, если нет кластера из 1000 GPU.
Вот хороший пример того, как молодые ребята могут и пишут статьи на топовые конфы. Парни написали 4 статьи [1, 2, 3, 4] на NeurIPS в этом году, и получили Yandex ML Prize. Один как научный руководитель, в второй как PhD студент с первой топовой публикацией. Заходить в PhD со статьи на Нипсе — это нагло! Я, кстати, тоже начал свою научную карьеру именно со статьи на Нипсе.
@ai_newz
Вот хороший пример того, как молодые ребята могут и пишут статьи на топовые конфы. Парни написали 4 статьи [1, 2, 3, 4] на NeurIPS в этом году, и получили Yandex ML Prize. Один как научный руководитель, в второй как PhD студент с первой топовой публикацией. Заходить в PhD со статьи на Нипсе — это нагло! Я, кстати, тоже начал свою научную карьеру именно со статьи на Нипсе.
@ai_newz
Telegram
Жёлтый AI
Наши чуваки @vkurenkov и @Howuhh выиграли Yandex ML Prize (ex премия Сегаловича)!
Студенты Влада в этом году опубликовали 4 статьи на A* конференциях, за что он выиграл в номинации "Молодые научные руководители". А Саша был одним из этих студентов, поэтому…
Студенты Влада в этом году опубликовали 4 статьи на A* конференциях, за что он выиграл в номинации "Молодые научные руководители". А Саша был одним из этих студентов, поэтому…
This media is not supported in your browser
VIEW IN TELEGRAM
Слежу за прогрессом в работах по теме виртуальной примерки. В канале уже целая серия постов об этом — от ганов до диффузии (гляньте для наглядного сравнения). Ещё я даже сам пробовал демо с виртуальным зеркалом на ICCV 2023.
Если раньше проблема виртуальной примерки казалось почти нерешаемой в адекватном качестве, то сейчас я замечаю, что каждые полгода результаты становятся всё лучше и лучше. Вот на днях Alibaba опубликовали новый метод на основе диффузии.
Загружаешь фото и примеры шмоток, а на выходе получаешь не просто фото в одежде, а целую анимацию!
Демо на HF
Сайт проекта
@ai_newz
Если раньше проблема виртуальной примерки казалось почти нерешаемой в адекватном качестве, то сейчас я замечаю, что каждые полгода результаты становятся всё лучше и лучше. Вот на днях Alibaba опубликовали новый метод на основе диффузии.
Загружаешь фото и примеры шмоток, а на выходе получаешь не просто фото в одежде, а целую анимацию!
Демо на HF
Сайт проекта
@ai_newz
Forwarded from Метаверсошная
Media is too big
VIEW IN TELEGRAM
Так-с, там Эндрю Босворт тех дир Меты, выкатил программный пост с итогами десятилетия.
Что мне показалось интересным:
- ставка очень явно делается на смешанную реальность, а не VR.
У смешанной реальности намного больше юзкейсов, Мета внимательно следит, что люди делают с новым шлемом Квест 3.
7 из 20 лучших приложений к концу года - это приложения смешанной реальности.
- технология ИИ и технология "метаверса" (условно - "воплощенного" интернета, внутри которого мы будем находиться) идут навстречу друг другу. И в какой-то момент соединятся.
- Босворт хочет, чтобы ИИ видел мир нашими глазами (это отсылка к их умным очкам Рэйбан), даже больше - воспринимал мир как мы, люди. И не нуждался в подсказках.
- на основе метовских нейросеток Llama и Llama 2 уже напилено 13 тысяч приложений. Теперь, говорит Босворт, надо принести этот огонь людям (а не только задротам, которые ковыряются с API) и мы уже встраиваем все это добро во всякие инстаграмы.
А главный вопрос - это что нас ждет в следующее десятилетие.
Нужно сформировать видение уже сейчас, чтобы понимать куда нам ехать.
Что мне показалось интересным:
- ставка очень явно делается на смешанную реальность, а не VR.
У смешанной реальности намного больше юзкейсов, Мета внимательно следит, что люди делают с новым шлемом Квест 3.
7 из 20 лучших приложений к концу года - это приложения смешанной реальности.
- технология ИИ и технология "метаверса" (условно - "воплощенного" интернета, внутри которого мы будем находиться) идут навстречу друг другу. И в какой-то момент соединятся.
- Босворт хочет, чтобы ИИ видел мир нашими глазами (это отсылка к их умным очкам Рэйбан), даже больше - воспринимал мир как мы, люди. И не нуждался в подсказках.
- на основе метовских нейросеток Llama и Llama 2 уже напилено 13 тысяч приложений. Теперь, говорит Босворт, надо принести этот огонь людям (а не только задротам, которые ковыряются с API) и мы уже встраиваем все это добро во всякие инстаграмы.
А главный вопрос - это что нас ждет в следующее десятилетие.
Нужно сформировать видение уже сейчас, чтобы понимать куда нам ехать.
This media is not supported in your browser
VIEW IN TELEGRAM
Вы только посмотрите на этого обаятельного 30-летнего молодого человека. Это Джеф Безос, основатель Амазона, показывает первый офис компании в 1994 году. Амазончику тогда было всего несколько месяцев от основания, и только через 3 года он сделает IPO.
Съемку ведет отец Безоса, все действия проходят в гараже. Любопытно, что видео как бы нарочно записывалось, уже зная про безусловный будущий успех компании 📈, чтобы похвастаться через 30 лет, мол, посмотрите с чего я начинал — кабели кругом и бардак на столе.
Все равно видео атмосферное и вдохновляющее, да и Безос там ещё совсем скромный.
@ai_newz
Съемку ведет отец Безоса, все действия проходят в гараже. Любопытно, что видео как бы нарочно записывалось, уже зная про безусловный будущий успех компании 📈, чтобы похвастаться через 30 лет, мол, посмотрите с чего я начинал — кабели кругом и бардак на столе.
Все равно видео атмосферное и вдохновляющее, да и Безос там ещё совсем скромный.
@ai_newz
This media is not supported in your browser
VIEW IN TELEGRAM
🤯Локальные LLM-ки на подъеме — некий Кулибин запуcтил Карпатовскую llama2.c на Galaxy Watch 4!
Моделька не самая жирная, но это пока. Через год-два 1B параметров будет на часах бегать. Персональный ассистент у вас на руке!
Скорость:
Модель с 15M параметров: 22 токенов/сек*
Модель с 43M параметров: 8 токенов/сек
Вот вам еще небольшая подборка моих постов, про локальнные LLM:
- LLaMa с text-retrieval плагином: тык-1, тык-2
- LLama-7B на на макбуке: тык
- LLaMa-30B на макбуке (4-bit + mmap): тык
- llama2.c или Карпатый запускает LLaMa-2-7B на рисоварке: тык
- Falcon 180B дома на маке M2 Ultra: тык
*один токен - это чуть меньше одного слова.
@ai_newz
Моделька не самая жирная, но это пока. Через год-два 1B параметров будет на часах бегать. Персональный ассистент у вас на руке!
Скорость:
Модель с 15M параметров: 22 токенов/сек*
Модель с 43M параметров: 8 токенов/сек
Вот вам еще небольшая подборка моих постов, про локальнные LLM:
- LLaMa с text-retrieval плагином: тык-1, тык-2
- LLama-7B на на макбуке: тык
- LLaMa-30B на макбуке (4-bit + mmap): тык
- llama2.c или Карпатый запускает LLaMa-2-7B на рисоварке: тык
- Falcon 180B дома на маке M2 Ultra: тык
*один токен - это чуть меньше одного слова.
@ai_newz
Решил разобрать детальнее статейку парней из Tinkoff Research — ReBRAC: Revisiting the Minimalist Approach to Offline Reinforcement Learning, которая была опубликована на NeurIPS в этом году.
Речь пойдет об Offline Reinforcement Learning. Это когда у агента нет доступа к энвайроменту, и он должен тренироваться на предписанном датасете. Это как если бы вы учились играть в Доту, только смотря реплеи и VOD-ы других игроков, но сами бы никогда не пробовали играть. Вот это и есть Offline RL.
Один из популярных методов для Offline RL — это Behavior-Regularized Actor-Critic (BRAC). Если в двух словах, то актор - это сеть, которая принимает решения о действиях агента в разных ситуациях. А критик оценивает действия, выполненные актером, и дает обратную связь о том, насколько хороши или плохи были эти действия. Важным дополнением здесь является, что актор в BRAC, в отличии от online-RL, старается выбирать действия близкие к датасету — это еще называют консервативностью.
Суть статьи в том, что авторы взяли этот минималистичный бейзлайн, Actor-Critic алгоритм, и накачали его стероидами в виде разных трюков, да так что он превратился из слабенького бейзлайна в очень сильный подход, который выдает результат на уровне гораздо более сложных специализированных подходов.
А теперь более детально. Дело в том что, часто в статьях ученые используют всевозможные мелкие трюки, на которых не акцентируют внимание, но которые по сути очень много добавляют к перформансу на практике. Авторы ReBRAC взяли основные трюки и провели детальный анализ влияния каждого из них, и затюнили их для алгоритма Actor-Critic:
- Большая глубина сети: почему-то в литературе до этого в основном использовали MLP c 2-мя скрытыми слоями. Очень странно, ведь это крошечная сетка.
- LayerNorm — полезно вставлять между слоями. Помогает критику преодолеть оверконсервативность.
- Батчи по-больше — всегда хорошо для повышения стабильности тренировки.
- Разная константа в MSE-регуляризации актера и критика.
- Увеличенный дискаунт-фактор для реворда — помогает когда реворд-сигнал довольно жидкий.
После этого оказалось, что даже такой простой алгоритм достиг уровня SOTA, и теперь его можно использовать как очень сильную отправную точку для всех дальнейших исследований в Offline RL.
Мораль такова, что маленькие детали имеют большое значение! Побольше бы таких статей с трюками в других областях, жаль что такое редко публикуется — все держат свои трюки при себе.
@ai_newz
Речь пойдет об Offline Reinforcement Learning. Это когда у агента нет доступа к энвайроменту, и он должен тренироваться на предписанном датасете. Это как если бы вы учились играть в Доту, только смотря реплеи и VOD-ы других игроков, но сами бы никогда не пробовали играть. Вот это и есть Offline RL.
Один из популярных методов для Offline RL — это Behavior-Regularized Actor-Critic (BRAC). Если в двух словах, то актор - это сеть, которая принимает решения о действиях агента в разных ситуациях. А критик оценивает действия, выполненные актером, и дает обратную связь о том, насколько хороши или плохи были эти действия. Важным дополнением здесь является, что актор в BRAC, в отличии от online-RL, старается выбирать действия близкие к датасету — это еще называют консервативностью.
Суть статьи в том, что авторы взяли этот минималистичный бейзлайн, Actor-Critic алгоритм, и накачали его стероидами в виде разных трюков, да так что он превратился из слабенького бейзлайна в очень сильный подход, который выдает результат на уровне гораздо более сложных специализированных подходов.
А теперь более детально. Дело в том что, часто в статьях ученые используют всевозможные мелкие трюки, на которых не акцентируют внимание, но которые по сути очень много добавляют к перформансу на практике. Авторы ReBRAC взяли основные трюки и провели детальный анализ влияния каждого из них, и затюнили их для алгоритма Actor-Critic:
- Большая глубина сети: почему-то в литературе до этого в основном использовали MLP c 2-мя скрытыми слоями. Очень странно, ведь это крошечная сетка.
- LayerNorm — полезно вставлять между слоями. Помогает критику преодолеть оверконсервативность.
- Батчи по-больше — всегда хорошо для повышения стабильности тренировки.
- Разная константа в MSE-регуляризации актера и критика.
- Увеличенный дискаунт-фактор для реворда — помогает когда реворд-сигнал довольно жидкий.
После этого оказалось, что даже такой простой алгоритм достиг уровня SOTA, и теперь его можно использовать как очень сильную отправную точку для всех дальнейших исследований в Offline RL.
Мораль такова, что маленькие детали имеют большое значение! Побольше бы таких статей с трюками в других областях, жаль что такое редко публикуется — все держат свои трюки при себе.
@ai_newz
arXiv.org
Revisiting the Minimalist Approach to Offline Reinforcement Learning
Recent years have witnessed significant advancements in offline reinforcement learning (RL), resulting in the development of numerous algorithms with varying degrees of complexity. While these...
Ура! Нас 40 тысяч! 😗 За год канал вырос на 15 тысяч читателей: c 25k до 40k.
Приятно видеть столько умных и заинтересованных в эйай людей вместе. Я, правда, не думал, что на русском языке можно набрать такую большую аудиторию, ведь контент в канале зачастую не самый легкий.
Поделюсь с вами, про мои самые любимые плюшки, которые я как автор обрел благодаря каналу.
1. Теперь, я получаю удовольствие вдвойне при прочтении новой статьи. Во-первых от получения новых знаний, а во-вторых мне радостно делиться информацией с вами и объяснять сложные вещи.
2. Огромное количество новых знакомств, которые принесло ведение канала. Мой нетворк значительно вырос и распространился по всему миру. Иногда поступают очень интересные предложения о коллаборациях и партнерствах либо просто встретиться на кофе в новом городе.
3. Во время нескольких последних поездок на конференции (CVPR, ICCV в этом году) у меня прям здорово получалось наводить движ благодаря комьюнити, которое образовалось вокруг канала. Было приятно знакомиться и общаться с вами! И я, кажется, понял, что мне очень нравится организовывать такие тусы.
В августе я проводил большой опрос читателей. Cкоро поделюсь его результатами и тем, как на базе этого я планирую развивать контент.
Надеюсь, что наше комьюнити будет и дальше активно развиваться! Merry Christmas!🎄
@ai_newz
Приятно видеть столько умных и заинтересованных в эйай людей вместе. Я, правда, не думал, что на русском языке можно набрать такую большую аудиторию, ведь контент в канале зачастую не самый легкий.
Поделюсь с вами, про мои самые любимые плюшки, которые я как автор обрел благодаря каналу.
1. Теперь, я получаю удовольствие вдвойне при прочтении новой статьи. Во-первых от получения новых знаний, а во-вторых мне радостно делиться информацией с вами и объяснять сложные вещи.
2. Огромное количество новых знакомств, которые принесло ведение канала. Мой нетворк значительно вырос и распространился по всему миру. Иногда поступают очень интересные предложения о коллаборациях и партнерствах либо просто встретиться на кофе в новом городе.
3. Во время нескольких последних поездок на конференции (CVPR, ICCV в этом году) у меня прям здорово получалось наводить движ благодаря комьюнити, которое образовалось вокруг канала. Было приятно знакомиться и общаться с вами! И я, кажется, понял, что мне очень нравится организовывать такие тусы.
В августе я проводил большой опрос читателей. Cкоро поделюсь его результатами и тем, как на базе этого я планирую развивать контент.
Надеюсь, что наше комьюнити будет и дальше активно развиваться! Merry Christmas!
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Принес вам 14 книг по Machine Learning для прочтения в 2024 году
Вкатывающимся в ML архиважно иметь структурированную информацию для обучения. Чтобы избежать головокружения от длины списка, советую для начала выбрать по одной книге из каждой секции и вперёд штудировать!
🧠 Фундамент
1. Deep Learning: Foundations and Concepts (Bishop & Bishop, 2023)
2. Deep Learning (Goodfellow, Bengio, Courville, 2016)
3. The Little Book of Deep Learning (Fleuret, 2023). [тык]
4. Mathematics for Machine Learning (Deisenroth, Faisal, Ong, 2020)
5. Probabilistic Machine Learning (Murphy, 2012-2023)
6. Linear Algebra and Learning from Data (Strang, 2019)
💻 Более практические
7. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition (Géron, 2022)
7. Dive into Deep Learning (Zhang et al., 2023)
9. Designing Machine Learning Systems (Huyen, 2022)
10. Fundamentals of Data Engineering (Reis & Housley, 2022)
🤗 LLM-ки
11. Natural Language Processing with Transformers, Revised Edition (Tunstall, von Werra, Wolf, 2023)
12. Hands-On Large Language Models (Alammar and Grootendorst, 2024 - WIP)
🎉 Генеративный AI
13. Generative Deep Learning, 2nd Edition (Foster, 2023)
14. Hands-On Generative AI with Transformers and Diffusion Models (Cuenca et al., 2024 - WIP)
Многие из книг можно найти в интернете бесплатно. Список, конечно, не исчерпывающий, но довольно вместительный.
Часть списка подготовил мой знакомый из Hugging Face, Omar Sanseviero, а я его дополнил. #книги #books
@ai_newz
Вкатывающимся в ML архиважно иметь структурированную информацию для обучения. Чтобы избежать головокружения от длины списка, советую для начала выбрать по одной книге из каждой секции и вперёд штудировать!
1. Deep Learning: Foundations and Concepts (Bishop & Bishop, 2023)
2. Deep Learning (Goodfellow, Bengio, Courville, 2016)
3. The Little Book of Deep Learning (Fleuret, 2023). [тык]
4. Mathematics for Machine Learning (Deisenroth, Faisal, Ong, 2020)
5. Probabilistic Machine Learning (Murphy, 2012-2023)
6. Linear Algebra and Learning from Data (Strang, 2019)
7. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition (Géron, 2022)
7. Dive into Deep Learning (Zhang et al., 2023)
9. Designing Machine Learning Systems (Huyen, 2022)
10. Fundamentals of Data Engineering (Reis & Housley, 2022)
🤗 LLM-ки
11. Natural Language Processing with Transformers, Revised Edition (Tunstall, von Werra, Wolf, 2023)
12. Hands-On Large Language Models (Alammar and Grootendorst, 2024 - WIP)
13. Generative Deep Learning, 2nd Edition (Foster, 2023)
14. Hands-On Generative AI with Transformers and Diffusion Models (Cuenca et al., 2024 - WIP)
Многие из книг можно найти в интернете бесплатно. Список, конечно, не исчерпывающий, но довольно вместительный.
Часть списка подготовил мой знакомый из Hugging Face, Omar Sanseviero, а я его дополнил. #книги #books
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Самая мощная LLM в опесорсе, Mixtral 8x7B MoE от Mistral AI, теперь доступна во фреймворке Сandle* - с поддержкой квантизации. За счет квантизации модели могут работать локально на ноутбуке с 32 GB RAM.
Например, 4-битная Mixtral 8x7B MoE занимает всего 26.44GB памяти. Тогда как в bf16 на GPU модель бы заняла 112+ GB VRAM (то есть влезла бы только на H100).
*Candle - это минималистский ML-фреймворк для Rust, сфокусированный на производительности (включая поддержку GPU) и простоте использования.
- Поддерживает 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit int квантизованные модели в gguf and ggml форматах.
- SIMD оптимизации для Apple Silicon и x86.
Вот тут можете попробовать демки разных моделей на Candle:
- Whisper, [пост в канале]
- LLaMa-2, [пост в канале]
- T5,
- YOLOv8,
- Segment Anything [пост в канале]
@ai_newz
Например, 4-битная Mixtral 8x7B MoE занимает всего 26.44GB памяти. Тогда как в bf16 на GPU модель бы заняла 112+ GB VRAM (то есть влезла бы только на H100).
*Candle - это минималистский ML-фреймворк для Rust, сфокусированный на производительности (включая поддержку GPU) и простоте использования.
- Поддерживает 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit int квантизованные модели в gguf and ggml форматах.
- SIMD оптимизации для Apple Silicon и x86.
Вот тут можете попробовать демки разных моделей на Candle:
- Whisper, [пост в канале]
- LLaMa-2, [пост в канале]
- T5,
- YOLOv8,
- Segment Anything [пост в канале]
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
Поздравляю всех с Новым Годом!
Это был продуктивный 2023 год, а в 2024 году желаю вам всем хороших градиентов, быстрой сходимости и достижения абсолютно всех поставленных целей!
🎆 🥳 🍾
@ai_newz
Это был продуктивный 2023 год, а в 2024 году желаю вам всем хороших градиентов, быстрой сходимости и достижения абсолютно всех поставленных целей!
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
О важности отдыха "с отключением"
Порой мне сложно разгрузить голову и оставить работу в офисе после того, как я пришел вечером домой. Постоянно крутятся мысли, идеи и хочется доделать задачу либо запустить эксперименты на ночь, чтобы ГПУшки не простаивали. Кроме того, тесная работа с коллегами из Калифорнии тоже поддаёт угля в огонь.
Работать в таком режиме продолжительное время, конечно, утомительно, хоть я и очень люблю то, чем занимаюсь. Поэтому заставляю себя на выходных и во время отпуска отключаться полностью, не проверять рабочую переписку и не читать научные статьи. Ну, либо читать, но только ради удовольствия — каюсь, не могу от них полностью отказаться🤪 .
Вот и сейчас у меня было 2 недели без рабочих вопросов, даже не писал в канал и почти не читал другие каналы, чтобы мозг отдохнул от беспрерывного потока информации.
По себе замечаю, что эффективность такого отдыха гораздо выше, чем когда в отпуске даже по часу в день занимаешься чем-то, связаным с работой. После отдыха "с отключением", приступая к работе, всегда чувствую много энергии и искрюсь новыми идеями. Также это хорошая пилюля против выгорания.
Так что, теперь я опять с вами!
Расскажите в комментариях, как вы отдыхаете от интенсивного умственного труда?
#personal
@ai_newz
Порой мне сложно разгрузить голову и оставить работу в офисе после того, как я пришел вечером домой. Постоянно крутятся мысли, идеи и хочется доделать задачу либо запустить эксперименты на ночь, чтобы ГПУшки не простаивали. Кроме того, тесная работа с коллегами из Калифорнии тоже поддаёт угля в огонь.
Работать в таком режиме продолжительное время, конечно, утомительно, хоть я и очень люблю то, чем занимаюсь. Поэтому заставляю себя на выходных и во время отпуска отключаться полностью, не проверять рабочую переписку и не читать научные статьи. Ну, либо читать, но только ради удовольствия — каюсь, не могу от них полностью отказаться
Вот и сейчас у меня было 2 недели без рабочих вопросов, даже не писал в канал и почти не читал другие каналы, чтобы мозг отдохнул от беспрерывного потока информации.
По себе замечаю, что эффективность такого отдыха гораздо выше, чем когда в отпуске даже по часу в день занимаешься чем-то, связаным с работой. После отдыха "с отключением", приступая к работе, всегда чувствую много энергии и искрюсь новыми идеями. Также это хорошая пилюля против выгорания.
Так что, теперь я опять с вами!
Расскажите в комментариях, как вы отдыхаете от интенсивного умственного труда?
#personal
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding
Кайфовая работа вышла. Позволяет генерить людей в разных стилях и амплуа по заданным фотографиям. Вон смотрите как кайфово ЛеКуна нагенерили.
Но, в отличие от DreamBoth и всяких LORA, в этой работе избавились от надобности файнтюнить модель под каждую новую личность.
Во время тренировки мы выдираем из входных фоток эмбеддинги, кодирующую личность, и учим диффузионную модель использовать их в качестве кондишенинга для генерации желаемых личностей.
А во время инференса, мы можем подать набор фотографий нового юзера и сгенерить для него аватарки без дополнительных тренировок. Это быстро и более эффективно, чем файнтюн под каждого юзера.
Идея простая и изящная, строящаяся на том, что давно существуют сетки, способные выдирать фичи, кодирующие внешность человека. Например, для ре-идентификации.
Сайт проекта
Код
Можно попробовать демки на HF:
1. Демо в реализмем
2. Демо со стилизацией
@ai_newz
Кайфовая работа вышла. Позволяет генерить людей в разных стилях и амплуа по заданным фотографиям. Вон смотрите как кайфово ЛеКуна нагенерили.
Но, в отличие от DreamBoth и всяких LORA, в этой работе избавились от надобности файнтюнить модель под каждую новую личность.
Во время тренировки мы выдираем из входных фоток эмбеддинги, кодирующую личность, и учим диффузионную модель использовать их в качестве кондишенинга для генерации желаемых личностей.
А во время инференса, мы можем подать набор фотографий нового юзера и сгенерить для него аватарки без дополнительных тренировок. Это быстро и более эффективно, чем файнтюн под каждого юзера.
Идея простая и изящная, строящаяся на том, что давно существуют сетки, способные выдирать фичи, кодирующие внешность человека. Например, для ре-идентификации.
Сайт проекта
Код
Можно попробовать демки на HF:
1. Демо в реализмем
2. Демо со стилизацией
@ai_newz
Всем бы в 60 быть в такой форме! Талантливый человек — талантлив во всем.
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
LLaMa 3 уже тренируется
Марк анонсировал сегодня у себя в IG, что уже тренирутся LLaMa 3, и на подходе другие клёвые AI модели.
Чтобы все это добро эффективно тренировать, по ходу строится огромный кластер, в котором будет 350,000 H100 до конца года. Общий размер компьюта будет примерно равен 600,000 H100, если перевести всё в H100 эквивалент.
@ai_newz
Марк анонсировал сегодня у себя в IG, что уже тренирутся LLaMa 3, и на подходе другие клёвые AI модели.
Чтобы все это добро эффективно тренировать, по ходу строится огромный кластер, в котором будет 350,000 H100 до конца года. Общий размер компьюта будет примерно равен 600,000 H100, если перевести всё в H100 эквивалент.
@ai_newz
Stable LM 2 1.6B от Stability AI
Кажется, Stability AI решили немного улучшить состояние дел в маленьких LLM. Вот выпустили Stable LM 2 со скромными 1.6B. По бенчмаркам она показывает себя более чем достойно и является самой сильной моделью в весовой категории до 2 млрд параметров.
Тренили ее две эпохи на двух триллионах токенов. Датасет использовали мультиязычный - Английский, Испансикй, Немецкий, Итальянский, Французский, Португальский и Голландский. Русского, увы нет.
В целом, мне нравится тренд на создание уменьшенных моделей, не сильно теряя в качестве генерации. Проще и шустрее будет такие модельки запускать у себя на лаптопе либо на мобильниках.
Демка на HF
Базовая модель
Instruction-tuned версия
@ai_newz
Кажется, Stability AI решили немного улучшить состояние дел в маленьких LLM. Вот выпустили Stable LM 2 со скромными 1.6B. По бенчмаркам она показывает себя более чем достойно и является самой сильной моделью в весовой категории до 2 млрд параметров.
Тренили ее две эпохи на двух триллионах токенов. Датасет использовали мультиязычный - Английский, Испансикй, Немецкий, Итальянский, Французский, Португальский и Голландский. Русского, увы нет.
В целом, мне нравится тренд на создание уменьшенных моделей, не сильно теряя в качестве генерации. Проще и шустрее будет такие модельки запускать у себя на лаптопе либо на мобильниках.
Демка на HF
Базовая модель
Instruction-tuned версия
@ai_newz
This media is not supported in your browser
VIEW IN TELEGRAM
А вот теперь, мы начнем играть в VR по-взрослому! Disney представила свою новую крышесносную разработку HoloTile Floor. Это имено то, что я себе представлял в детстве, когда мы с парнями мечтали о будущих играх виратуальной реальности.
Да, я четко помню, что в году 2005 у нас уже были обсуждения и фантазии насчет "виртуальной реалтности", которая вот-вот появится на новых компах, и мы будем играть лесными эльфами, охраной дворца и злодеем. Можно будет грабить корованы...
А с таким полом, кажется, можно действительно испытать полное погружение в виртуальную реальность. HoloTile Floor первым делом будут устанавливать в парках развлечения Disney, но в какой-то момент они могут дойти и до домашних пользователей. Кроме обычных игр, фитнес приложения смогут выйти на совсем иной уровень.
Omni-directional беговые дорожки существовали и ранее (например virtuix), но они как правило выглядели громоздко и на игрока нужно было вешать кучу дополнительных приблуд. Кроме того, в HoloTile Floor, можно еще и перемещать предметы, и двигаться, сидя на предметах.
В общем, what a time to be alive! И ждем новых серий черного зеркала.🤯
@ai_newz
Да, я четко помню, что в году 2005 у нас уже были обсуждения и фантазии насчет "виртуальной реалтности", которая вот-вот появится на новых компах, и мы будем играть лесными эльфами, охраной дворца и злодеем. Можно будет грабить корованы...
А с таким полом, кажется, можно действительно испытать полное погружение в виртуальную реальность. HoloTile Floor первым делом будут устанавливать в парках развлечения Disney, но в какой-то момент они могут дойти и до домашних пользователей. Кроме обычных игр, фитнес приложения смогут выйти на совсем иной уровень.
Omni-directional беговые дорожки существовали и ранее (например virtuix), но они как правило выглядели громоздко и на игрока нужно было вешать кучу дополнительных приблуд. Кроме того, в HoloTile Floor, можно еще и перемещать предметы, и двигаться, сидя на предметах.
В общем, what a time to be alive! И ждем новых серий черного зеркала.
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM