Свежий Бесплатный курс от freeCodeCamp по программированию CUDA.
Этот 12-ти часовой видео курс, с которым вы научитесь программировать с помощью Nvidia CUDA и использовать графические процессоры для высокопроизводительных вычислений и Deep learning.
Содержание:
▪Video: https://www.youtube.com/watch?v=86FAWCzIe_4
▪Code: https://github.com/Infatoshi/cuda-course
▪Github https://github.com/Infatoshi/mnist-cuda
▪Nvidia CUDA in 100 Seconds: https://youtu.be/pPStdjuYzSI?si=WIUc--IpgN-Qi2AP
#cuda #deeplearning #cpp #c #bigdata #courses #бесплатныйкурс
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machine learning Interview
Гайд 120-дневной программы обучения CUDA для всех, кто хочет углубиться в программирование на GPU.
Это структурированный, ежедневный план, охватывающий потоки, управление памятью, параллелизм и отладку и многое другое.
Урок на каждый день включает в себя:
- Разбор основной темы занятии
- Практическое упражнение / мини-проект
Разбор ошибок при отладке кода
- Рекомендованные ресурсы
▪Github
▪CUDA C Programming Guide
▪CUDA Toolkit Reference
▪CUDA Best Practices Guide
▪ Бесплатный 12-ти часовой курс по CUDA от freeCodeCamp
@machinelearning_interview - материалы для мл собеса
#cuda #nvidia #freecourse #opensource #tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
Python уже несколько лет уверенно лидирует среди языков программирования, а теперь стал ещё ближе к железу. На GTC 2025 NVIDIA объявила о полноценной интеграции Python в свой CUDA-стек.
Это значит, что писать код для GPU можно будет напрямую на Python — без погружения в C++ или Fortran. Как подчеркнул Стивен Джонс, архитектор CUDA, цель — сделать инструмент естественным для Python-разработчиков: «Это не перевод синтаксиса C на Python. Все должно работать так, как привыкли разработчики».
Раньше CUDA требовала глубокого понимания низкоуровневых языков и это здорово ограничивало аудиторию. Сейчас, когда Python стал стандартом в ML и DS, NVIDIA открывает двери для миллионов программистов. По данным The Futurum Group, в 2023 году CUDA использовали 4 миллиона человек — теперь их число может резко вырасти.
Техническая часть такая же обширная, как и ожидания этого события профессиональным сообществом.
cuPyNumeric
— аналог NumPy
, который переносит вычисления с CPU на GPU буквально заменой импорта.Но главное — новый подход к параллельным вычислениям. Вместо ручного управления потоками, как в C++, NVIDIA предлагает модель CuTile, которая оперирует массивами, а не отдельными элементами. Это упрощает отладку и делает код читаемым, не жертвуя скоростью. По сути, разработчики получают высокоуровневую абстракцию, скрывающую сложности железа, но сохраняющую гибкость.
Пока CuTile доступен только для Python, но в планах — расширение для C++. Это часть стратегии NVIDIA по поддержке новых языков: Rust и Julia уже на походе.
Python-сообщество уже может экспериментировать — например, интегрировать CUDA-ядра в PyTorch или вызывать привычные библиотеки. Теперь даже те, кто никогда не писал на C++, смогут использовать всю мощь GPU — осталось проверить, как это скажется на скорости создания прекрасных LLM светлого будущего.
@ai_machinelearning_big_data
#AI #ML #Python #CUDA #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM